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EXECUTIVE SUMMARY 

 Improving the environmental sustainability of agriculture is essential to ensuring the 
long-term cultural, economic, and ecological well-being of the Great Lakes region. Nowhere in 
the region is this more apparent than in the watershed of the Western Lake Erie Basin (WLEB). 
An estimated 5.5 million acres of cropland exist in the WLEB, making it the most intensively 
farmed watershed in the Great Lakes Basin. Agriculture is fundamental to maintaining the 
quality of life of many people living in the WLEB and helps feed many people living outside the 
region. However, non-point source pollution from intensive agriculture threatens aquatic 
ecosystems and the essential ecosystem services that they provide. Thus, farming practices that 
allow for continued agricultural production without degrading the surrounding ecosystem are 
needed in the WLEB. 

Strong support currently exists in the WLEB to increase investment in agricultural 
conservation practices (CPs) to improve water quality in Lake Erie and its tributaries. These 
practices offer the potential to improve water quality by reducing sediments and nutrients from 
agricultural fields, while also maintaining soil quality and farm profitability. While large 
investments in CPs have been made over the past several decades, the cumulative benefits of 
these investments for aquatic ecosystems are poorly understood at the watershed-scale and how 
much additional investment might be needed to achieve meaningful environmental benefits is 
unclear, both at present and with continued climate change. This information is vital for strategic 
conservation in the WLEB. In a large agricultural watershed, such as the WLEB, strategic 
conservation means getting the right CPs to the right places in the right amount to achieve 
realistic ecological and water quality outcomes.  

The goal of our project was to provide WLEB decision-makers with the scientific 
information needed to make informed decisions about the use of CPs for stream conservation, 
primarily, and secondarily for water quality in Lake Erie proper. Specifically, we coupled a state-
of-the-art hydrology model for the WLEB watershed with robust predictive biological models to 
quantify how CPs may improve water quality and benefit stream fish communities, using 
meaningful measures of stream health. Our project built upon previous work in the Saginaw Bay 
watershed to better understand how much conservation is enough and what the associated costs 
would be to achieve meaningful benefits for stream ecosystems in the WLEB. We also sought to 
identify areas within the watershed where CPs would provide the most benefit and to understand 
to what extent targeted nutrient reductions for Lake Erie (e.g., 40% reduction in total 
phosphorus) would benefit stream ecosystems. 

Our results highlight the integral role that CPs could have for improving agricultural 
sustainability in the WLEB. Agricultural runoff appears to be a major contributor to the poor 
water quality that is widespread throughout the WLEB, potentially limiting fish community 
health in more than 10,000 km of streams and rivers, representing more than 50% of the 
watershed. While the current level of CP implementation has certainly improved water quality, a 
need still exists for additional structural (erosion control) and nutrient management practices. For 
example, our results showed that, while improvements in stream health could be made by 
maintaining current CP treatment levels and only further treating farm acres in high-need of CPs 
(~8% of the watershed), a much larger portion of the watershed (~48%) needs treatment with 
CPs to achieve widespread benefits for stream fishes. If the effort was made to place additional 
erosion control and nutrient management CPs in high- and moderate-need acres, fish 
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communities could be improved in more than 9,600 km of streams and water quality would no 
longer be limiting in more than 2,500 km of streams. Further improvements would be possible if 
even more farm acres were treated with CPs. 

Our results also showed that multiple water quality concerns (nitrogen, phosphorus, and 
sediment) need to be tackled simultaneously because high levels of these pollutants often co-
occurred within the same stream, each with the potential to limit stream fish communities. Based 
on established eutrophication thresholds for North American streams, we found that 75% and 
91% of streams had phosphorus and nitrogen concentrations, respectively, that could result in 
eutrophic conditions. Moreover, 49% of the streams had sediment concentrations that could 
potentially degrade stream fish communities. Nearly 47% of streams had concentrations 
exceeding thresholds for all three water quality concerns. Therefore, CP implementation that 
addresses nitrogen, phosphorus, and sediments are needed to reduce water quality limitation and 
improve stream health throughout the WLEB. 

Treating these multiple water quality concerns simultaneously will likely require 
increased investment in agricultural CPs because different farm fields will require different suites 
of CPs to address these multiple runoff and leaching concerns, and these CPs must be 
implemented across a large portion of the watershed to achieve meaningful benefits. For 
instance, we estimate that treating high- and moderate-needs farm acres with erosion control and 
nutrient management CPs would cost an additional $149 million annually. Given the apparent 
levels of needed economic investment, continued interaction among agencies and stakeholders 
regarding appropriate management and conservation targets in relation to monetary costs seems 
prudent. Such interaction, supplemented with information from our modeling effort and others 
like it, should offer the needed science-base to identify the most cost-effective next steps and 
associated tradeoffs.  

We also found that while CPs will have an important role to play in WLEB stream 
conservation, they likely will not be a panacea. Water quality is expected to limit fish 
communities in as much as 8,513 km of streams, even if erosion control and nutrient 
management CPs are implemented across the majority (~80%) of farm acres in the watershed. 
Thus, expectations for CP benefits should be realistic. Our results showed that farmland 
treatment with CPs can be an integral component of a comprehensive watershed management 
strategy that considers other potential sources of water pollution (e.g., point sources, urban and 
exurban runoff) and non-water quality stressors (e.g., dispersal barriers, in-stream habitat, altered 
hydrology, and invasive species).  

Lastly, we found that widespread implementation of CPs appears capable of meeting the 
Lake Erie total phosphorus loading target identified in the Great Lakes Water Quality 
Agreement. To meet this target, however, current practices will need to be maintained and high- 
and moderate-needs farm acres (~48% of the watershed) also will likely need to be treated with 
CPs. While management focused on Lake Erie should also improve stream conditions, solely 
focusing on Lake Erie without explicitly considering the health of its tributaries may result in 
hundreds to thousands of stream kilometers remaining degraded by poor water quality. For 
instance, treating high- and moderate-needs farm acres with only erosion control CPs would 
potentially meet Lake Erie nutrient loading goals, but would leave fish communities limited by 
water quality in more than 2,000 km of streams, as compared to more intensive CP 
implementation (i.e., erosion control and nutrient management). Considering the health of 
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streams in Lake Erie’s watershed in addition to water quality in Lake Erie proper may help 
achieve “win-wins” for the whole Lake Erie ecosystem. 

While the amount and cost of CP implementation needed to improve stream health in the 
WLEB may appear daunting, our modeling indicates that win-win-wins for agricultural 
productivity, local stream ecosystems, and downstream Lake Erie are possible. Achieving these 
wins in the most cost-effective manner, however, will require strategic conservation to ensure 
that the right practices are getting to the right places in the right amount, continued research to 
explore and maximize the potential benefits of CPs, and expanded water quality and biological 
monitoring to track progress and allow for adaptive management. Unprecedented collaboration 
across government agencies, conservation organizations, research universities, agribusinesses, 
and individual farmers also will be necessary to develop innovative, cost-effective solutions. 
And, because a perfect strategy likely does not exist that can meet all conservation, management, 
and socioeconomic goals in the WLEB, we must be aware of tradeoffs, be willing to take action 
with the best available information, and be willing to adapt. In so doing, we will maximize our 
ability to sustain the vital cultural, economic, and ecological services that the WLEB provides. 
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INTRODUCTION 

Agriculture plays an important role in the social and economic wellbeing of many people 
living in the Western Lake Erie Basin (WLEB). Agriculture is the most prevalent land use in the 
watershed, covering more than 70% of the land area (Figure 1), or about 5.5 million acres 
(USDA NRCS 2011). This amount of land in agricultural production makes the WLEB the most 
intensive agricultural watershed in the Great Lakes Basin, comprising 31% of all cropland acres 
in the region (USDA NRCS 2011). The economic and social value of this extensive agricultural 
production is immense. For example, agricultural sales in the WLEB exceeded $2.9 billion1 
during 2012 (www.agcensus.usda.gov). However, the socioeconomic benefits of agricultural 
production in the WLEB have come with environmental costs. Non-point source (NPS) pollution 
from agriculture threatens freshwater biodiversity and the vital ecosystem services provided by 
Lake Erie and its watershed (Scavia et al. 2014). For example, intensive agriculture has degraded 
stream habitat and water quality, contributing to widespread population declines of more than 
40% of the fish species native to WLEB streams and rivers (Karr et al. 1985). Excess nutrients 
from agricultural runoff are also contributing to Lake Erie’s re-eutrophication, which threatens 
drinking water, fisheries, tourism, and other valuable ecosystem services supported by a healthy 
Lake Erie (Michalak et al. 2013, Scavia et al. 2014). Thus, the adoption of environmentally 
sustainable agricultural practices is essential for the long-term cultural, economic, and ecological 
health of the WLEB.  

Considerable interest exists among WLEB decision-makers in understanding the 
potential for agricultural conservation practices (CPs) to improve agricultural sustainability. 
Such practices can improve water quality by reducing NPS pollution from agriculture, while also 
improving soil health and maintaining farm profitability (Schnepf and Cox 2006). Indeed, 
growing evidence indicates that past implementation of CPs has improved stream water quality 
(Richards and Baker 2002, Richards et al. 2005, Richards et al. 2009) and biological conditions 
(Ohio EPA 2014, Miltner 2015) in the WLEB.  

While CPs hold great promise for improving the environmental sustainability of 
agriculture, several key information gaps limit our ability to effectively incorporate CPs into 
watershed conservation plans for the WLEB. Critical outstanding questions include - (1) “How 
much additional CP implementation is needed to improve stream water quality and fish 
community health, both now and under a changing climate?”; (2) “Which types of CPs are most 
beneficial and cost-effective?”; (3) “How much financial investment is needed to see meaningful 
benefits in stream health?”; (4) “Where in the watershed will the implementation of additional 
CPs be most beneficial?”; and (5) “Do potential “win-wins” exist for Lake Erie water quality 
management and stream conservation?” The goal of our project was to quantify the potential 
environmental benefits of CPs and provide WLEB decision-makers with the information needed 
to make informed decisions about the use of CPs for protecting and rehabilitating stream health, 
primarily, and secondarily for improving Lake Erie water quality. This information is essential 

                                                           
1 This estimate is likely conservative because it only includes data from counties with at least 
90% of their land area within the WLEB. For example, if counties with ~50% of their land area 
within the WLEB were included, this estimate increased to more than $4 billion. 

http://www.agcensus.usda.gov/
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for strategic conservation, which involves getting the right types of CPs to the right places in the 
right amount to achieve realistic conservation outcomes (Sowa et al. 2011; Sowa et al. In press). 

We coupled a state-of-the-art hydrologic model (Soil Water Assessment Tool, SWAT, 
Arnold et al. 1999) with robust predictive biological models to quantify how additional 
implementation of CPs may improve water quality and benefit stream fish communities in 
WLEB rivers and streams. We focused on fish communities because they provide an integrative 
measure of stream conditions and are commonly used by federal and state agencies to assess 
overall stream health. We specifically explored how effective CPs might be for reducing total 
phosphorus (TP), total nitrogen (TN), and suspended sediment (SS) concentrations, stressors that 
can affect stream fishes in a variety of ways. Excess nutrients can stimulate algal growth, 
resulting in altered dissolved oxygen levels and changes in stream food webs that can negatively 
affect stream fish communities (Miltner and Rankin 1998, Wang et al. 2007, Evans-White et al. 
2009, Miltner 2010, Taylor et al. 2014). Chronic levels of high nitrogen concentrations also may 
be toxic to some fish species (Camargo et al. 2005, Camargo and Alonso 2006). Excess SS 
concentrations may directly harm fish by damaging gills, altering light levels and primary 
production, and reducing the foraging ability of visual predators (Waters 1995, Wood and 
Armitage 1997). For these reasons, high levels of TN, TP, and SS are considered a major threat 
to stream fish communities and are a main contributor to stream impairment in the United States 
(US EPA 2016). While other stressors also are important (e.g., invasive species, in-stream habitat 
degradation, altered hydrology), by focusing explicitly on these three water quality stressors, we 
were able to delineate how CPs may benefit stream fishes by reducing these persistent and 
ubiquitous stressors.  
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Figure 1. Land-use in the Western Lake Erie Basin (WLEB) and its extensive stream network, 
which contains more than 20,000 km of streams. Major land uses include agriculture (>70% of 
the watershed), developed land (~12% of the watershed), and forested or herbaceous lands 
(~12% of the watershed). Major tributaries in the WLEB include the Maumee River, Portage 
River, River Raisin, and Sandusky River.  
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PROJECT PLAN 

We developed four specific objectives to complete this project (Figure 2). To simulate the 
effects of land-use, including farming practices, on stream water quality we developed a fine-
scale watershed model using SWAT (Objective 1). We then linked simulated water quality 
conditions to observed fish community data and developed stressor-response biological models 
(Objective 2). We used these models to forecast fish community health throughout the WLEB 
based on simulated water quality conditions during 1990-2010. To quantify the potential benefits 
of additional implementation of CPs, we used conservation scenarios based on the CEAP-
Cropland conservation practice adoption scenarios (USDA NRCS 2011) that consisted of 
different types and amounts of CP implementation (Objective 3). Farm-scale reductions in 
agricultural runoff and leaching losses in each conservation scenario were simulated as part of 
CEAP-Cropland using the Agricultural Policy/Environmental eXtender model (APEX; Gassman 
et al. 2009). These reductions were used to adjust edge-of-field nutrient and sediment inputs in 
our SWAT model and then routed through the WLEB stream network to simulate changes in 
water quality at the stream-scale. We then used our biological stressor-response models to 
forecast and quantify potential impacts on fish community health that resulted from simulated 
CP implementation. The results of this modeling effort are being shared with managers, 
stakeholders, and decision-makers to inform strategic conservation in the WLEB (Objective 4).  

Detailed descriptions of how each objective was accomplished are provided in a series of 
progress reports and peer-reviewed manuscripts (Appendices A-C), which are also available on 
the project website (http://lakeerieceap.com/) or by request (Dr. Stuart Ludsin, The Ohio State 
University, email: ludsin.1@osu.edu). Here, we provide a general overview of the project’s 
approach, synthesize overall findings, and discuss the broader implications of our modeling 
effort. 

  

http://lakeerieceap.com/
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Figure 2. Conceptual diagram for the Western Lake Erie CEAP-Wildlife project. Detailed 
descriptions of how we accomplished each objective are available in a series of progress reports 
on the project website (http://lakeerieceap.com/). 

  

http://lakeerieceap.com/
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STUDY AREA 

The WLEB is a ~ 26,000 km2 watershed that drains portions of southeastern Michigan, 
northeastern Indiana, and northwestern Ohio (Figure 1). This large watershed is predominantly in 
the Eastern Corn Belt Plains (~50%) or Huron/Erie Lake Plains (~49%) Level III Ecoregions, 
with the remaining ~1% being in the Southern Michigan/Northern Indiana Drift Plains. These 
ecoregions are characterized by fertile soils that historically supported a mixture of hardwood 
forests, wetlands, and prairies (Woods et al. 1998). Widespread land-clearing and wetland-
draining began during the mid-1800s, with the fertile soils now supporting highly productive 
row-crop agriculture (Trautman, 1981). Although agriculture is the most prevalent land use in 
the WLEB (>70% of the watershed), patchily distributed urban and forested/herbaceous areas 
occur throughout the watershed.  

Streams in the WLEB are typically low gradient (average slope < 2%) and slow-flowing. 
Historically, they supported a rich fish fauna, with 98 fish species native to the WLEB (Karr et 
al. 1985). This level of diversity makes the WLEB the most biologically diverse watersheds in 
the Great Lakes Basin (Trautman, 1981). Unfortunately, a long history of habitat and water 
quality degradation has taken its toll on WLEB stream communities. More than 40% of the fish 
species native to the area have experienced population declines, with as many as 17 species 
potentially extirpated locally (Karr et al. 1985). These effects are most pronounced for headwater 
species sensitive to habitat degradation, along with specialized feeding guilds such as herbivores, 
predators, and insectivores (Karr et al. 1985). By contrast, pollution-tolerant and omnivorous 
species have increased in numbers, resulting in contemporary fish communities that would be 
largely unrecognizable to early European settlers in the WLEB (Trautman, 1981; Karr et al. 
1985).  
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OBJECTIVE 1: DEVELOPMENT AND VALIDATION OF THE DOWNSCALED 
WATERSHED MODEL 

We developed a fine-scale watershed hydrological model using SWAT to simulate 
stream water quality in the WLEB watershed. SWAT is a widely used process-based model 
(Gassman et al. 2007, Arnold et al. 2015) that performs well in comparison to other watershed 
models in the WLEB (Gebremariam et al. 2014). Because detailed descriptions of the model and 
its development are available elsewhere (Model initialization: Daggupati et al. 2015a, 
Flow/water quality calibration/validation: Yen et al. 2016, Appendix A, Appendix 
B, http://lakeerieceap.com/ ), we only provide a brief description here. The SWAT model was 
calibrated from 1990 to 1999 with a three-year warm-up period (1987-1989; Yen et al. 2016). 
The model was validated from 2000 to 2006 using observed TN, TP, and SS loads from five 
gauges throughout the WLEB. In total, watershed simulations were run from 1990-2010 to 
simulate stream water quality.  

A novel aspect of our SWAT model is that we developed it at the NHDPlus-scale, a 
much finer spatial resolution than previous SWAT models. For example, typical SWAT models 
are developed for 12-digit hydrologic unit code (HUC-12) subwatersheds, of which there are 391 
in the WLEB with an average size of 72 km2. By contrast, there are 11,128 subwatersheds with 
an average size of 2.6 km2 in the WLEB at the NHDPlus-scale (Daggupati et al. 2015a). We 
developed the model at this fine spatial resolution because previous research in the Saginaw Bay 
watershed demonstrated the value of a finer resolution SWAT model for developing accurate 
biological models and informing stream conservation in agricultural watersheds (Sowa et al. 
2011).  

To calibrate the SWAT model at this fine spatial resolution, we initially calibrated model 
parameters at the 1:240,000 scale using predefined HUC-12 subwatersheds and then further 
calibrated and validated at the 1:100,000 scale using the NHDPlus stream network 
(http://www.horizon-systems.com). This approach of transferring parameters across spatial 
scales worked well, particularly at the monthly time-step (Daggupati et al. 2015a). We also used 
a proxy-basin spatial calibration strategy (Klemes 1986, Daggupati et al. 2015b) to reflect spatial 
heterogeneity that exists in large watersheds like the WLEB (Daggupati et al. 2015a). This 
approach greatly improved model performance relative to a non-spatial strategy (Daggupati et al. 
2015a). We incorporated tile drainage into our SWAT model by assuming that any agricultural 
fields located in poorly drained soils with < 1% slopes contained tile drains (Daggupati et al. 
2015a). We found that this approach for including tile drainage greatly improved model 
performance (Daggupati et al. 2015a). We also used “soft data” during model development to 
ensure simulations properly reflected realistic watershed behavior (Yen et al. 2014a, Yen et al. 
2014b). Specifically, the denitrification rate was controlled to be less than 50 kg/ha (David et al. 
2009) and the ratio of nitrate contributions from tile drainage versus surface runoff was above 
two-thirds of total nitrate losses (Schilling 2002). More details about the SWAT functions used 
for soft data and nutrient processes in the tile drain system can found elsewhere (Yen et al. 
2016). 

Model development focused on accurately estimating long-term average conditions at the 
monthly time-step, using the percent bias (PBIAS) as our measure of accuracy. Negative PBIAS 
values indicate that the model predictions were below observed values on average and positive 
values indicate that model predictions were above observed values. Values close to zero indicate 

http://lakeerieceap.com/
http://www.horizon-systems.com/
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a close match of model predictions to observed values. Based on widely adopted levels of 
acceptable model performance (Moriasi et al., 2007), we found that our watershed model 
performed well for all water quality attributes except for River Raisin stream flow, which was 
marginally (+1%) outside the range of what is considered acceptable (Table 1).  

Table 1. Percent bias (PBIAS) for watershed model validation at the monthly time-step for 
stream discharge and suspended sediment (SS), total phosphorus (TP), and total nitrogen loads 
(TN) within the WLEB during 2000 to 2006. Boldface font indicates acceptable model 
performance based on PBIAS (Moriasi et al. 2007). 

  Stream 
discharge   SS   TP   TN 

Station PBIAS   PBIAS   PBIAS   PBIAS 
Maumee River -14%   10%   -3%   -13% 
River Raisin 26%   -35%   23%   -4% 
Sandusky River -7%   35%   -1%   12% 
St. Joseph River -19%   20%   -5%   69% 
St. Marys River -25%   -19%   -9%   -21% 
 

Baseline Water Quality Conditions in the WLEB 

 Nutrient and sediment concentrations during Baseline conditions (i.e., simulated 
conditions during 1990-2010 before CPs were added in our conservation scenarios) appeared to 
be high in streams throughout the WLEB (Figure 3). Mean (± 1 S.D.) annual concentrations 
(mg/L) in WLEB streams were 5.27 (± 3.22) for TN, 0.191 (± 0.148) for TP, and 142.31 (± 
173.26) for SS. To place this into context, TN concentrations above 1.5 mg/L and TP 
concentrations above 0.075 mg/L may signify eutrophic conditions in North American streams 
(Dodds et al. 1998). Although less well defined, SS concentrations greater than 80 mg/L may 
negatively affect freshwater fisheries (http://www.in.gov/idem/nps/3484.htm). Based on average 
annual concentrations, we found that as much as 75% (15,342 km) and 91% (18,533 km) of 
streams in the WLEB were above TP or TN eutrophication thresholds, respectively, with SS 
concentrations in 49% (9,989 km) of streams being above 80 mg/L. Nearly 47% (9,454 km) of 
streams had average values above thresholds for all three water quality attributes, indicating the 
need to reduce inputs of all three potential stressors to improve stream health. While these exact 
percentages should be interpreted with caution, surveys by state agencies also consistently 
document high nutrient levels that are potentially harmful to aquatic life, biological indicators of 
eutrophication, drinking water impairment as the result of high nitrate levels in several 
municipalities, and potentially harmful levels of sedimentation/siltation in many streams in the 
WLEB watershed (Ohio EPA 2014). Moreover, nutrient and sediment stressors often co-
occurred in biologically impaired streams from surveys during 2012-2013 (e.g., Table 3 in Ohio 
EPA 2014). Taken together, our results and recent observations from within the watershed 
suggest that water quality stressors are widespread in WLEB streams, often co-occurring. More 
generally, our results support the growing recognition of the need to address multiple stressors in 
freshwater ecosystems (Ormerod et al. 2010), which can interact to affect stream biota 
(Townsend et al. 2008, Matthaei et al. 2010, Piggott et al. 2015). 

http://www.in.gov/idem/nps/3484.htm
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 Agriculture appears to be a major contributor to these water quality conditions. When 
compared to simulations from a Grassland scenario, in which we converted all agricultural lands 
to native grasses and simulated resulting conditions, water quality stressors were considerably 
higher in the Baseline scenario. We found that average concentrations of TP, TN, and SS were, 
respectively, 0.15 mg/L, 4.24 mg/L, 117.25 mg/L higher for Baseline conditions than in the 
Grassland scenario (Table 2). Although not a precise measure of agricultural contributions, these 
large differences between the Baseline conditions and the Grassland scenario suggest that 
agriculture is contributing a substantial amount of nutrients and sediments to WLEB streams. 

 

Figure 3. Simulated Baseline water quality conditions in WLEB subwatersheds based on 
average annual total phosphorus (TP), total nitrogen (TN), and suspended sediment (SS) 
concentrations simulated during 1990-2010. Concentrations below 0.025 mg/L for TP, 0.7 mg/L 
for TN, and 25 mg/L for SS were considered low while those above 0.075 mg/L for TP, 1.6 
mg/L for TN, and 80 mg/L for SS were considered high. 
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Table 2. Minimum (Min), maximum (Max), and average (Mean) simulated water quality conditions for the Baseline (Baseline) 
conditions and Grassland (Grassland) scenario. Averages represent the mean concentration or flow across all stream segments. Q = 
Discharge; SS = suspended sediments; TP = total phosphorus; TN = total nitrogen; NI = nutrient index. 

  Annual Water Quality 

 Q (L/s)  SS (mg/L)  TP (mg/L)  TN (mg/L)  NI 

 Baseline Grassland  Baseline Grassland  Baseline Grassland  Baseline Grassland  Baseline Grassland 
Min 0 0  0 0  0.00 0.00  0 0  0.00 0.00 
Max 117302 119696  1243 908  0.93 0.51  18.8 9.1  1.55 1.14 
Mean 2303 2340  142 25  0.19 0.04  5.3 1.0  0.80 0.29 
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OBJECTIVE 2: DEVELOPMENT OF BIOLOGICAL STRESSOR-RESPONSE 
MODELS AND BASELINE PREDICTIONS 

Compiled Biological Data 

Stream fish community data were provided by Indiana Department of Environmental 
Management (18 stream reaches), Michigan Department of Environmental Quality and Michigan 
Department of Natural Resources (101 stream reaches), and the Ohio Environmental Protection 
Agency (722 stream reaches). Samples were collected during 1979-2012, which we reduced to 
only samples collected after 1990 to more closely match our hydrological simulation period. Fish 
samples were collected through various electro-shocking methods according to the size of stream 
being sampled, but were similar among agencies (Ohio EPA 1987; Michigan DEQ 1997; Indiana 
DEM 2007). These samples were rigorously evaluated to ensure that they represented 
community samples, species occurrences were correct given their known ranges, and sample 
locations were geographically accurate. Samples were spatially linked to the NHDPlus stream 
network according to their latitude, longitude, and written descriptions of their location. If 
multiple samples were collected in the same stream segment during the same year, we used the 
mean value to represent that stream segment and year combination. If stream segments were 
sampled during multiple years, we used the most recently available sampling year to reflect 
current biological conditions as closely as possible. This data-filtering process resulted in 841 
unique fish samples from across the watershed that were used to develop biological models 
(Figure 4). The average number of samples within major HUC-8 drainages was 76, with the St. 
Mary’s River watershed (04100004) sampled the least (N = 14) and the Sandusky River 
watershed (04100011) sampled the most (N = 200). The average upstream drainage area of 
sampled stream segments was 799 km2, but ranged from 0.89 km2 to 17,018 km2. Most samples 
(N = 605) were from mid-sized to small streams (Strahler stream order 1-3), with the rest (N = 
236) from larger rivers (Strahler stream order 4-12) 

 Fish community samples were used to calculate an index of biotic integrity (IBI) 
according to Michigan’s procedure-51 (Michigan DEQ 1997). The IBI is a multimetric index of 
various feeding, reproductive, and pollution tolerance guilds that measures the condition of a fish 
community relative to what would be expected if human disturbances were not present (Karr 
1981). We also calculated the relative abundance of piscivorous fishes to assess biological 
conditions. The presence of piscivores represents a healthy and trophically diverse fish 
community, with these species typically declining in abundance with increasing human 
disturbance (Karr 1981). Moreover, piscivores are often recreationally important (e.g., 
smallmouth bass, Micropterus dolomieu; northern pike, Esox lucius). Hereafter, we refer to the 
relative abundance of piscivorous fishes as the Piscivore Index. These fish community metrics 
were re-scaled as 𝑧𝑧𝑖𝑖 =  𝑥𝑥𝑖𝑖−min (𝑥𝑥)

max(𝑥𝑥)−min(𝑥𝑥)
 to have a minimum of zero and a maximum of one based 

on the minimum and maximum observed values from our fish community dataset.  
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Figure 4. Locations of fish community samples used to develop biological models. Fish 
community samples (n=841) were collected by Indiana Department of Environmental 
Management, Michigan Department of Environmental Quality, Michigan Department of Natural 
Resources, and Ohio Environmental Protection Agency during 1990-2010 using a variety of 
electro-shocking methods.
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Development of Community Level Stressor-Response Biological Models 

We modeled limiting relationships, or ceilings, between fish community metrics and 
various water quality and stream flow parameters using quantile regression. We used quantile 
regression because it is appropriate for identifying limiting relationships between stressors and 
responses despite not all potentially limiting factors being measured (Cade et al. 1999, Cade and 
Noon 2003). A detailed description of our approach is provided in project progress reports 
(http://lakeerieceap.com/), as well as published manuscripts (Keitzer et al. 2016; Appendix C).  

In short, we linked stream water quality and flow conditions simulated from our 
watershed model during 1990 to 2010 to observed fish community data. We then used an 
information theoretic approach to identify the most parsimonious model for explaining variation 
in the observed data from our candidate set of models (Burnham and Anderson 1998). This 
initial candidate set included models describing various additive and interactive effects of water 
quality and flow on stream fish communities (Table 3). We included models containing average 
annual, spring (1 March through 30 June), or summer (1 July through 30 September) values as 
covariates in candidate models to determine if seasonal or annual variables better explained fish 
community health. These water quality and flow variables represent long-term averages for a 
stream segment from the 21 years simulated by our hydrologic model. 

Two important updates were made to our approach from earlier reports. The first is that 
we modelled the 97th percentile, as opposed to the 95th percentile, of the fish community data to 
model ceilings in relationships more closely. Second, we did not include TP and TN within the 
same models because of concerns over multicollinearity (Dormann et al. 2013). Instead, we 
created a nutrient index variable that was the additive combination of log10+1-transformed TN 
and log10+1-transformed TP concentrations. This allowed us to examine the combined effects of 
TN and TP without the issue of multicollinearity. A similar nutrient index, using dissolved 
inorganic nitrogen instead of TN, has proven useful for understanding nutrient effects on stream 
fauna (Niyogi et al. 2007, Townsend et al. 2008). The best2 models were then validated using k-
fold cross-validation. Cross-validation consisted of randomly dividing the data into 10 
approximately equal-sized groups (k=10) and iteratively selecting one group for model 
parameterization, and validating model predictions using observed data from the remaining 
“test” data. We considered models acceptable if we found statistically significant and positive 
correlations for each k-fold and at least 97% of the observed values fell below predicted values 
(Vaz et al. 2008).  

Fish community metrics were logit-transformed (Warton and Hui 2011) prior to analyses 
because values were bounded between zero and one. Stream flow values were log10+1-
transformed to improve linearity. Water quality attributes (flow, nutrient index, and SS) were 
standardized to have a mean of zero and standard deviation of one to place all predictors on the 
same scale and improve interpretation of their relative effects. Quantile regressions were fit using 
the ‘quantreg’ package (Koeneker 2015) and model selection statistics were calculated using the 
‘MuMIn’ package (Barton 2015) in the R statistical environment (R Core Team 2015). 

                                                           
2 The best or most parsimonious model was identified by the bias corrected Akaike’s Information 
Criteria (AICc; Burnham and Anderson 1998). 

http://lakeerieceap.com/
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Our models accurately captured limiting relationships between fish community metrics 
and stream water quality and flow (Table 4). The inclusion of the nutrient index, SS, and an 
interaction between them in the best model for the IBI and Piscivore Index showed that both 
nutrients and sediments are important in explaining fish community health in the WLEB. The 
shapes of the modeled relationships suggest that water quality stressors had a larger impact on 
the Piscivore Index than the IBI (Figure 5). While relationships were generally negative for 
water quality stressors and positive for stream flow, as expected, there did appear to be a positive 
relationship between SS and the IBI. The reason for this unexpected positive relationship is 
unclear, but the effect was relatively minor and may suggest that sediments have a small effect 
on the IBI when suspended in the water column. Instead, the well-documented negative effects 
of sediment pollution may become more pronounced when sediments are deposited in streams, 
where they can smother foraging and reproductive habitat and alter food webs (Waters 1995, 
Wood and Armitage 1997).  

We used the best supported model for both fish community metrics to forecast the 
potential fish community health within a stream segment. This process was done for all streams 
in the WLEB and served as the ‘Baseline’ condition for stream fish communities based on 
average water quality conditions during 1990-2010. We considered a stream segment to be 
“Limited” if the forecasted fish community metric from our quantile regression models was 
below the 90th percentile of the observed fish community dataset (Figure 5). We also simulated a 
scenario in which all farmland was converted to native grasses. This “Grassland” scenario served 
as an unrealistic, but important "bookend scenario" by which to assess the effectiveness of CPs 
in our other scenarios. 

Our modeling suggests that water quality, including nutrients, sediments, and stream 
flow, were limiting stream fish communities throughout the WLEB (Figure 6). Our forecasted 
biological conditions indicated 61% (12,414 km) and 54% (10,967 km) of the watershed was 
limited for the IBI and Piscivore Index, respectively. The amount of the watershed where water 
quality was not limiting stream fish communities was considerably lower in the Baseline 
scenario than forecasted for the Grassland scenario (Figure 7), suggesting that poor water quality 
from agricultural runoff is a major contributor to degraded stream fish communities in the 
WLEB.  
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Table 3. Candidate models used to forecast fish metrics and model selection statistics. Models 
were ranked according to the bias-corrected Akaike’s Information Criterion (AICc). Spring = Sp; 
Annual = An; Summer = Su; Discharge = Q, suspended sediments = SS, nutrient index = NI. 
Boldface indicates the model used to forecast fish community metrics. IBI = Index of Biotic 
Integrity; Piscivore Index = Relative abundance of piscivorous fishes. 

IBI 

Model AICc ∆ AICc 
SpQ + SpSS + SpNI + SpSS x SpNI 2988.27 0.00 
SpQ + SpSS + SpNI   2990.17 1.90 
AnQ + AnSS + AnNI 3035.38 47.11 
AnQ + AnSS + AnNI + AnSS x AnNI 3037.31 49.05 
SpQ + SpNI 3047.20 58.93 
SuQ + SuSS + SuNI + SuSS x SuNI 3050.54 62.27 
SuQ + SuSS + SuNI    3052.72 64.46 
SuQ + SuNI 3069.91 81.64 
AnQ + AnNI 3078.70 90.44 
SuQ 3092.88 104.61 
SuQ + SuSS 3093.07 104.80 
SpQ 3099.11 110.85 
SpQ + SpSS 3101.05 112.78 
AnQ 3115.77 127.50 
AnQ + AnSS 3117.50 129.23 
Null 3271.29 283.02 

Piscivore Index 
SpQ + SpSS + SpNI + SpSS x SpNI 3681.49 0.00 
SpQ + SpSS + SpNI   3696.22 14.73 
SpQ + SpNI 3697.17 15.68 
AnQ + AnSS + AnNI + AnSS x AnNI 3697.83 16.33 
AnQ + AnSS + AnNI 3698.95 17.46 
AnQ + AnNI 3700.01 18.51 
SuQ + SuSS + SuNI + SuSS x SuNI 3736.21 54.72 
SuQ + SuSS + SuNI    3749.85 68.35 
SuQ + SuNI 3749.91 68.42 
SuQ + SuSS 3761.98 80.48 
AnQ + AnSS 3764.98 83.49 
SpQ + SpSS 3767.88 86.39 
AnQ 3830.66 149.17 
SuQ 3833.21 151.71 
SpQ 3833.40 151.90 
Null 3866.52 185.02 
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Table 4. Parameter estimates and model validation statistics for the best models for fish 
community metrics in the WLEB. Parameter estimates (± 1 S.D.) for the intercept, stream 
discharge (Q), suspended sediments (SS), nutrient index (Nut. Ind.), and interactions are shown 
on the logit-scale. Model validation statistics included the mean (± 1 S.D.). Spearman’s rank 
correlation (rs) between observed and predicted data and the percentage of observed data that 
were less than the predicted data (% below). Boldface font indicates acceptable validation 
statistics. IBI = Index of Biotic Integrity; Piscivore Index = Relative abundance of piscivorous 
fishes. 

Model 
Intercept Q Nut. Ind. SS 

Nut. 
Ind. x 

SS 
rs % below 

IBI 1.65 0.64 -0.37 0.20 0.06 0.53 (0.08) 97 (2) 
Piscivore Index -0.62 0.81 -0.73 -0.41 0.51 0.44 (0.09) 97 (2) 
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Figure 5. Modeled relationships between fish community metrics and suspended sediments (SS) 
or the nutrient index. Water quality parameters were the average of simulated spring (1 March to 
30 June) concentrations during 1990 – 2010, and standardized to have a mean of zero and S.D. of 
one. The dashed black line indicates the threshold where fish metrics were no longer considered 
limited; this value was based on the 90th percentile of the observed fish sampling data. Solid lines 
indicate relationships between fish metrics and water quality stressors relative to low (purple), 
average (green), or high (red) levels of the other stressor. All relationships are relative to a 
stream with a standardized spring flow of -0.18, which represents the median flow of streams 
that had observed fish community data. IBI = Index of Biotic Integrity; Piscivore Index = 
Relative abundance of piscivorous fishes. 
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Figure 6. Forecasted stream biological conditions in the WLEB based on water quality simulated 
in the Baseline scenario. The percentages of streams within a subwatershed classified as 
“Limited” are shown. Streams were classified as Limited if the biological conditions forecasted 
from the quantile regression models were below the 90th percentile of the observed fish 
community data. IBI = Index of Biotic Integrity, Piscivore Index = Relative abundance of 
piscivorous fishes. 
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Figure 7. Comparison of the percentage of the WLEB that is not limited by nutrients, sediments, 
or stream flow in the Baseline and Grassland (Grass) scenarios. IBI = Index of Biotic Integrity; 
Piscivore Index = Relative abundance of piscivorous fishes. 
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Development of Species Distribution Models  

In addition to modeling fish community metrics, we developed species distribution 
models (SDMs) to predict the presence/absence of species within a stream segment for 19 fish 
species that are sensitive to degraded habitat conditions. This allowed us to explore how 
individual species respond to water quality benefits of CP implementation. These species-level 
changes provided a deeper understanding of CP effectiveness and are of management concern in 
their own right. Species sensitivities were assigned from published literature (Angermeier and 
Karr 1986, Lyons et al. 1996) and Ohio Environmental Protection Agency (Ohio EPA) 
guidelines (Ohio EPA 2013a).  

We used boosted regression trees (BRT) to develop SDMs because it is a flexible 
regression approach that often outperforms traditional SDM modeling approaches, such as 
generalized linear models (Elith et al. 2008). Another useful property of BRTs is that the relative 
influence of variables can be compared, with higher relative influences indicating variables more 
important in explaining species distributions compared to other variables included in SDMs 
(Elith et al. 2008). We initially fit BRT models with a tree complexity of four and a learning rate 
of 0.001, which was then adjusted to ensure that at least 1000 regression trees were included 
(Elith et al. 2008). Our BRT models were fit using the ‘dismo’ package (Hijmans et al. 2015) in 
the R statistical environment (R Core Team 2015). 

 We included several natural and human threat variables in addition to water quality 
variables in SDMs (Table 5). These additional variables were included to improve the predictive 
performance of SDMs and evaluate the relative importance of water quality and non-water 
quality variables in shaping species distributions. We only included species that were present at 
≥ 5% of sites (n ≥ 42).  

 These models produce a probability of species occurrence within a stream segment. Thus, 
a probability threshold must be used to assign a species as present or absent within a stream 
segment. We used a probability threshold that was equal to a given species presence/absence in 
the observed data set, an approach that works as well or better than other threshold approaches 
(Liu et al. 2005). We evaluated our predictions using k-fold cross validation (k = 10) and the 
receiver-operator curve (AUC), which ranges from 0-1; AUC values of 0.5 indicate that models 
performed no better than random and values approaching unity indicate increased model 
accuracy. We considered a cross-validated AUC of ≥ 0.7 to be acceptable. We also calculated the 
percentage of times a species was correctly assigned as being present or absent (% Correct). 

Model validation statistics indicated that SDMs accurately predicted sensitive species 
distributions (Table 6). Although the relative influence differed among species, we found that 
stream discharge, SS concentration, and the nutrient index were the most influential variables 
when averaged across all species compared to non-water quality variables (Figure 8). We used 
these models to predict the presence/absence of each species within a stream segment based on 
water quality conditions simulated during 1990-2010 throughout the WLEB and non-water 
quality factors. We then summed sensitive species presences within a stream segment to 
calculate the sensitive species richness for that stream segment given Baseline and Grassland 
conditions. We assumed that a higher richness of sensitive species was indicative of a healthier 
fish community. 
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The mean sensitive species richness in the Baseline scenario was three, but varied across 
the watershed from 0 to 15 (Figure 9). By contrast, the mean species richness in the Grassland 
scenario was 4.5 and ranged from 0 to 17. These differences in sensitive species richness 
between the Grassland and Baseline scenarios suggests that agricultural NPS pollution is playing 
a major role in limiting stream fishes that are sensitive to habitat degradation, but also that some 
limitation would be present if the entire basin were converted from agriculture to grassland 
(Figure 10).  
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Table 5. Definitions of non-water quality variables included in species distribution models. We 
did not include other in-stream habitat variables known to influence fish species (e.g., in-stream 
cover, pool/riffle/run quality, bank erosion) because these variables were unavailable for the vast 
majority of streams within the WLEB and we would not have been able to forecast species 
distributions across the watershed if we had included them. 

Abbreviation Definition 
Slope The slope of a stream segment 
Sinuosity A measure of a stream segment’s curviness 

Nat. Rip. % of a stream segment's upstream riparian area that was classified as forested, 
herbaceous, or wetland 

Tmax The average maximum temperature in July (1975-2013) 
Road Cross. The number of road crossings within a watershed 
Dam Dist. The distance from the nearest downstream dam 

Imp. Surface The amount of impervious surfaces (e.g., roads, parking lots, developed areas)  within 
a watershed 

 



23 
 

Table 6. Model validation statistics for 19 fish species (species abbreviation) that are highly sensitive to water quality or habitat 
degradation. We considered models acceptable if the cross-validated area under the operating curve (AUC) was ≥ 0.70. The mean (± 1 
S.D.) of the AUC and percentage of correctly assigned species presences/absences (% Correct) from cross validation are shown. 

  In-sample statistics   Cross-validated statistics 
Species AUC % Correct   AUC % Correct 

Brook silverside (Brooksilver) 0.89 86   0.79 (± 0.12) 83 (± 2) 
Golden redhorse (Goldred) 0.87 86   0.80 (± 0.07) 81 (± 5) 
Greater redhorse (Greatred) 0.93 91   0.82 (± 0.13) 88 (± 3) 
Greensided darter (Greendar) 0.85 85   0.74 (± 0.05) 75 (± 5) 
Hornyhead chub (Hornyhead) 0.93 94   0.83 (± 0.11) 93 (± 3) 
Logperch (Logperch) 0.88 86   0.80 (± 0.06) 79 (± 5) 
Longear sunfish (Longear) 0.93 92   0.89 (± 0.03) 90 (± 3) 
Mottled sculpin (Msculpin) 0.95 92   0.81 (± 0.09) 89 (± 3) 
Northern hogsucker (Nhogsuck) 0.92 91   0.82 (± 0.06) 82 (± 4) 
Northern pike (Npike) 0.93 91   0.78 (± 0.08) 85 (± 3) 
Pumpkinseed sunfish (Pumpkin) 0.90 86   0.78 (± 0.05) 81 (± 4) 
Rainbow darter (Rainbowdar) 0.88 87   0.78 (± 0.08) 79 (± 4) 
Rock bass (Rockbass) 0.88 89   0.76 (± 0.05) 78 (± 5) 
Sand shiner (Sandsh) 0.83 83   0.77 (± 0.07) 79 (± 4) 
Shorthead redhorse (Shortheadred) 0.94 93   0.85 (± 0.09) 90 (± 3) 
Silver redhorse (Silverred) 0.97 94   0.90 (± 0.06) 91 (± 2) 
Smallmouth bass (Smallmouth) 0.97 96   0.82 (± 0.06) 84 (± 4) 
Spotted sucker (Spotsuck) 0.83 84   0.77 (± 0.05) 79 (± 3) 
Stonecat madtom (Stonecat) 0.79 75   0.75 (± 0.05) 73 (± 5) 
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Figure 8. The relative influence of different WLEB water quality and non-water quality factors 
on the distribution of 19 fish species that are sensitive to habitat degradation. Water quality 
factors included stream discharge (Discharge), suspended sediment concentration (Susp. Sed.), 
and the nutrient index (NI). See Table 5 for definitions of non-water quality factors and Table 6 
for fish species abbreviations. The Average panel is the average relative influence of a factor 
across all species. Note that the relative influence measures the absolute relative influence, 
whether negative or positive. In general, water quality factors had greater relative influence than 
other factors included in our models. 
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Figure 9. Forecasted sensitive species richness in the WLEB based on water quality simulated in 
Baseline scenario and non-water quality factors. Sensitive species richness is the average species 
richness within a subwatershed, based on individual species SDMs developed to forecast the 
presence/absence of 19 fish species sensitive to habitat degradation.  
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Figure 10. Forecasted sensitive species richness for the Baseline (Baseline) and Grassland 
(Grass) scenarios in the WLEB. Boxes show the interquartile range for forecasted sensitive 
species richness, with whiskers extending to the minimum and maximum of forecasted values. 
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OBJECTIVE 3: QUANTIFYING THE POTENTIAL ENVIRONMENTAL BENEFITS 
OF ADDITIONAL AGRICULTURAL CONSERVATION PRACTICE 

IMPLEMENTATION 

Development of Conservation Scenarios  

We used conservation scenarios developed by the Cropland component of the USDA 
NRCS Conservation Effects Assessment Project (CEAP-Cropland; USDA NRCS 2011) to 
simulate potential for additional implementation of CPs to improve stream fishes by reducing 
water quality stressors. Our scenarios represented a gradient of increasing implementation of 
CPs, from treating only farm acres in high-need of CP implementation, acres in high- and 
moderate-need, and treating all acres. A farm acre’s need for treatment was defined by the 
USDA-NRCS according to its inherent vulnerability for nutrient and sediment loss and level of 
CP treatment already present (USDA NRCS 2011). The level of treatment was based on 2003-
2006 farmer survey data as part of the National Resource Inventory (USDA NRCS 2011). 
Scenarios also consisted of either using only erosion control CPs (Table 7) or using erosion 
control and nutrient management (i.e., altering the amount, type, or timing of fertilizer 
application). We assumed an adoption rate of 80% and that the “best” option would be chosen on 
75% of the treated acres to implicitly account for individual farmer behavior. This approach 
resulted in six conservation scenarios (3 treatment levels x 2 categories of CPs).  

 Conservation scenarios from CEAP-Cropland were simulated using the Agricultural 
Policy/Environmental eXtender (APEX) model (Gassman et al. 2009). The fractional annual 
reductions in edge-of-field sediment and nutrient loads associated with each CEAP-Cropland 
conservation scenario were used to adjust edge-of-field SWAT predictions, such that the net 
effect of the conservation scenario was reflected in the SWAT model. The reduced SWAT edge-
of-field loads (representative of a conservation scenario) were then routed throughout the WLEB 
stream network using SWAT. We used our validated biological models to forecast stream fish 
communities and individual species based on the simulated water quality conditions in each 
conservation scenario to assess how much change occurred compared to the Baseline scenario 
(i.e., no additional CPs). The annual cost of each scenario was estimated as the total costs of 
planning, installation, maintenance, and forgone income on land converted to CPs. 
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Table 7. Potential agricultural practices implemented in WLEB conservation scenarios. Not all 
practices were implemented; their inclusion was determined from farmer surveys in the WLEB 
as part of the National Resource Inventory. Multiple practice types were potentially implemented 
within the same field to address both nutrient and sediment runoff concerns. All practices but 
nutrient management planning fall within the erosion control category. 

Conservation Practices NRCS Code 
Residue management tillage 329 
Contour farming 330 
Cover crops 340 
Wind break or shelter belt 380 
Field border 386 
Riparian herbaceous buffer 391 
Riparian forest buffer 392 
Filter strips 393 
Hedgerows 422 
Contour strip cropping 585 
Cross wind strips, traps, etc. 589 
Nutrient management planning 590 
Terrace 600 
Herbaceous wind barrier 603 
Surface roughening 609 
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Development of Additional Scenarios and Prioritizing Subwatersheds for CPs 

While the conservation scenarios described above allowed us to understand how much 
benefit CPs may be expected to provide as the result of water quality improvement and how 
much additional financial investment in CPs may be needed, they did not allow us to identify 
where in the watershed CPs might provide the most benefit. Therefore, we developed a separate 
set of scenarios that allowed us to identify subwatersheds within the WLEB where CPs would be 
most likely to provide a benefit to stream fishes. These scenarios used our simulated Baseline 
conditions as a starting point. We then “manually” reduced the amount of TN, TP, and sediments 
in agricultural runoff and leaching by 20%, 40%, 60%, 80% and 99% to create five additional 
scenarios. Hereafter, we use the term “reductions in agricultural inputs” to encompass these 
reductions in agricultural runoff and leaching. We forecasted potential changes in stream fish 
metrics that resulted from these reductions and compared subwatersheds to identify where in the 
WLEB the largest improvements in stream fishes occurred.  

We combined estimates of stream fish improvement with an agricultural threat index to 
identify subwatersheds where additional CP implementation will likely provide the most benefit 
to stream fishes. We calculated the agricultural threat index following the approach of Fore et al. 
(2014). The threat index scales from -4 to 4, with positive values indicating an increasing threat 
of agricultural relative to non-agricultural threats and negative values indicating an increasing 
amount of non-agricultural threats (Table 8). Importantly, this threat index only considers the 
threat of row-crop agriculture. Other forms of agriculture were not considered agricultural threats 
(e.g., cattle operations). Threat index scores ≥ 2 indicate watersheds where in-field and edge-of-
field CPs have the greatest potential to improve stream health (Figure 11; Fore et al. 2014). We 
identified subwatersheds with an agricultural threat index ≥ 2 and where improvements in stream 
fish communities were in the 80th percentile as potential priority subwatersheds for CPs. 

 We also used the agricultural runoff reduction scenarios to examine the relationship 
between stream fish metrics (IBI and Piscivore Index) and the percent reduction in agricultural 
inputs. Understanding the shape of these relationships (i.e., the amount of effort needed to 
improve stream fishes) could help inform management. We speculated that the relationship 
between stream benefits, as measured by the percentage of stream kilometers in which water 
quality was not limiting biological conditions, and reductions in agricultural runoff would follow 
one of three general shapes (Figure 12): 

(1) Linear: would suggest that benefits for stream fishes continued to increase at a constant 
rate with increasing inputs in agricultural runoff. This relationship can be described by a 
linear model -  

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 +  𝜀𝜀 

β0 is the estimate for the model intercept, β1 is the estimated effect of reducing 
agricultural inputs by a given percentage (x), and ε is an error term. 

(2) Concave down: would indicate that the rate of stream fish improvements is higher at 
lower reductions in agricultural runoff compared to higher inputs. This would suggest 
that the largest benefits were provided initially. This relationship can be described by a 
quadratic model -  

𝑦𝑦 =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 +  𝛽𝛽2𝑥𝑥2 +  𝜀𝜀 
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A negative estimate of β2 would indicate a concave down relationship. 
 

(3) Concave up: would indicate that improvements in stream fishes were small at lower 
reductions in agricultural inputs, but benefits increased with larger reductions. This 
would suggest that reductions in agricultural inputs must achieve some threshold before 
high rates of improvements in stream fish communities are possible. This relationship can 
also be described by a quadratic model, with a positive estimate of β2 indicating a 
concave up relationship. 

We examined the relationship between forecasted benefits for stream fish community metrics 
and percent reductions in agricultural runoff by comparing linear and quadratic models using an 
information theoretic approach (Burnham and Anderson 1998). We fit hierarchical models that 
allowed for slopes and intercepts to vary at the subwatershed scale (HUC-12) to account for 
autocorrelation that may result from repeatedly “sampling” subwatersheds in each reduction 
scenario. Percentage data were logit-transformed to meet normality assumptions of linear 
regression. Percent reductions in agricultural inputs were standardized to have a mean of zero 
and standard deviation of one to improve model convergence. Significance of coefficient 
estimates for fixed effects were tested with a parametric bootstrap (N = 500 replicates). We fit 
mixed models using the ‘lme4’ package (Bates et al. 2015) in the R statistical environment (R 
Core Team 2015). Models were fit with maximum likelihood to allow for model comparison 
(Bates et al. 2015). 
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Table 8. Variables used to develop an agricultural threat index for the WLEB. Local Variable Only refers to variables that were only 
available at the scale of the local catchment (i.e., NHDPlus catchment). All other variables were also calculated at the watershed-scale 
(i.e., upstream drainage area). Ag Threat and Non-Ag Threat refer to whether a threat variable was considered an agricultural threat 
(Ag. Threat) or a non-agricultural threat (Non-Ag Threat). Data sources (Data Source) of threat variables were from the Great Lakes 
Basin Fish Habitat Partnership (GLBFHP; http://greatlakes.fishhabitat.org/) or the Great Lakes Aquatic Gap 
(GLGAP; http://wi.water.usgs.gov/gap/index.htm) datasets.  

Threat Variables\ Description Local Variable 
Only 

Ag 
Threat 

Non-Ag 
Threat 

Data 
Source 

Dams National Inventory of Dams, 2002‐2004: 
Number of dam(s) present in catchment     X  GLBFHP 

Ground-water use 
USGS National Atlas of the US: Ground Water 
Use by COUNTY 2000: Millions gallons per 
day/km2 

    X GLBFHP 

Surface-water use 
USGS National Atlas of the US: Surface Water 
Use by COUNTY 2000: Millions gallons per 
day/km2 

    X GLBFHP 

Cattle 
Agricultural Census 2002, 1:2M scale, 
INTEGER: average number of cattle/acre 
farmland 

    X GLBFHP 

Road stream crossings 
Census 2000 TIGER Roads, 1:100K scale, road 
crossings identified by INTERSECT, with 
points generated, #/km2 

    X GLBFHP 

Mines USGS Active Mines and Mineral Processing 
Plants, 2003, #/km2     X GLBFHP 

Toxic release 
inventory sites 

USEPA, 2007: #/km2 Toxics Release Inventory 
Program sites     X GLBFHP 

NPDES sites USEPA, 2007: #/km2 National Pollutant 
Discharge Elimination System (NPDES) sites     X GLBFHP 

http://greatlakes.fishhabitat.org/
http://wi.water.usgs.gov/gap/index.htm
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CERCLIS sites USEPA, 2007: #/km2 Compensation and 
Liability Information System (CERCLIS) sites     X GLBFHP 

Impervious surface NLCD 2006 percent impervious, average, 
catchment     X GLBFHP 

Barrier between 
stream segment and 
Great Lake 

100 = dam/waterfall between target arc and 
Great Lakes system; 
1 = no dam/waterfall between target arc and 
Great Lakes system 

X   X GLGAP 

Distance to upstream 
dam 

Distance from closest upstream segment coded 
as dam (measured from downstream end of 
dam segment) to target segment 

X   X GLGAP 

Distance to 
downstream dam 

Distance from closest downstream segment 
coded as dam (measured from upstream end of 
dam segment) to target segment 

X   X GLGAP 

Size of closest 
upstream 
impoundment 

Area of closest lake/impoundment with area >= 
5 acres upstream of target segment X   X GLGAP 

Size of closest 
downstream 
impoundment 

Area of closest lake/impoundment with area >= 
10 acres downstream of target segment X   X GLGAP 

Riparian non-row crop 
agriculture 

Riparian agriculture, non-row crop (1992 
NLCD)     X GLGAP 

Riparian developed 
lands 

Riparian urban/developed classes, classes 11, 
12, 13, 14 (1992 NLCD)     X GLGAP 

Riparian row crop 
agriculture 

Riparian agriculture classes 22 and 23; row 
crop and Orchards/Vineyards/Other (1992 
NLCD) 

  X   GLGAP 
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Pasture/Hay NLCD 2006 percent pasture/hay, class 81 
(2006 NLCD)     X GLBFHP 

Cultivated crops NLCD 2006 percent crop land, class 82 (2006 
NLCD)   X   GLBFHP 
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Figure 11. Threat index for the Western Lake Erie Basin. This index scales from -4 to 4, with 
higher positive values indicating that agricultural threats are increasing relative to non-
agricultural threats (e.g., point sources of pollution, dams, urban development). Threat index 
scores ≥ 2 are outlined in bold and indicate subwatersheds where row-crop agricultural is likely 
the primary threat to stream health (Fore et al. 2014). 
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Figure 12. Generalized potential relationships between stream biological benefits and reductions 
in agricultural nutrient and sediment inputs. See text for descriptions of possible relationships. 
We tested the shape of these relationships using a model selection approach. 

  



36 
 

Potential Benefits of CP Implementation to Stream Fishes 

Our simulations suggest that widespread implementation of CPs throughout the WLEB 
has the potential to improve stream fish communities by reducing water quality as a limiting 
factor. Treating only those farm acres in high-need of CPs provided a relatively modest benefit in 
forecasted biological conditions compared to more widespread CP implementation (Figure 13). 
Treating only high-need acres improved the average IBI score by ~1%, the Piscivore Index by as 
much as 17%, and sensitive species richness by as much as 1% relative to the Baseline 
conditions. By contrast, treating farm acres in high- and moderate-need improved the average 
IBI score by as much as 6%, the Piscivore Index by as much as 42%, and sensitive species 
richness by as much 7% relative to Baseline conditions. Further improvements in forecasted 
biological conditions appear possible if acres in low-need are also treated with CPs.  

We also observed large increases in the percentage of the watershed where water quality 
was no longer limiting stream fishes with widespread CP implementation (Figure 14). For 
example, treating all (i.e., high-, moderate-, and low-need) farm acres with erosion control and 
nutrient management removed water quality limitation, based on the IBI, in an additional 19% of 
streams (3,901 km) and an additional 41% of streams (8,287 km) for the Piscivore Index 
compared to Baseline conditions.  

Additional Benefits of Including Nutrient Management 

Improvements in stream fish communities were generally larger when nutrient 
management was included in addition to erosion control CPs. Including nutrient management 
resulted in ~1,800 km and ~2,300 km fewer streams being limited for the IBI and Piscivore 
Index, respectively, compared to only including erosion control CPs. Moreover, while additional 
improvements in sensitive species richness were modest (~8%), in general, average sensitive 
species richness only increased when nutrient management was included in addition to erosion 
control CPs (Figure 14). 

 While including nutrient management resulted in overall greater potential improvements 
in stream fish communities, the additional annual financial investment was also considerably 
higher than only implementing erosion control practices (Table 9). We estimated that including 
nutrient management would cost about twice as much on average for treating comparable farm 
acre needs than only using erosion control CPs. Thus, including nutrient management may not be 
a more cost-effective strategy.  

To help understand the cost-effectiveness of including nutrient management, we 
examined the return on investment (ROI) of our conservation scenarios. The ROI is simply the 
forecasted benefit of a conservation action divided by the cost of that action and is a useful 
metric to help maximize the benefits of limited conservation resources (Naidoo et al. 2006; 
Murdoch et al. 2007). The estimated ROI from our conservation scenarios highlights two 
important insights for stream conservation in the WLEB. First, nutrient management (plus 
erosion control) generally represented a more cost effective management strategy than erosion 
control alone (Figure 15). For the biological metrics that we considered, the addition of nutrient 
management provided a similar ROI for the Piscivore Index, but provided a 3-fold and 16-fold 
larger ROI for the IBI and sensitive species richness, respectively. Second, treating farm acres in 
high-need first was a more cost effective management option than also treating moderate- or 



37 
 

low-needs acres. Treating acres in high need resulted in a ROI that was 2.8-fold to 4-fold larger 
than treating acres in low- and moderate -need across all fish metrics. Treating acres in low-need 
resulted in further reductions in the ROI compared to less-intensive conservation scenarios. 
Thus, accurately identifying acres in high-need of CPs and treating those acres first may help 
maximize the benefits of limited conservation resources in the WLEB. Treating these high-need 
farm acres first may also increase the likelihood of rapid and measurable improvements in stream 
health, which is important for maintaining momentum for long-term conservation efforts. 
However, because treating high-need acres alone would only improve conditions in a relatively 
small portion of streams; the need exists to also treat moderate- and low-needs acres if we truly 
want to reduce water quality as a limiting factor of stream health throughout the WLEB. 

Benefits Relative to the Grassland Scenario 

Relative to the Grassland scenario, even widespread implementation of erosion control 
and nutrient management CPs fell short of removing all water quality limitation (Table 9). Even 
in the most intensive conservation scenario (i.e., erosion control and nutrient management 
applied to high-, moderate-, and low-need acres), water quality would still limit the IBI in more 
than 8,000 km of streams compared to just 1,051km in the Grassland scenario. Similarly, water 
quality would still limit the Piscivore Index in ~2,000 more km of streams in the most intensive 
conservation scenario as compared to the Grassland scenario, and sensitive species richness 
would be about 1.2-fold lower. Assuming the Grassland scenario represents a theoretical upper 
benchmark of potential conditions3, our results suggest that expectations for CPs be realistic. 
While large improvements are possible with widespread CP implementation, eliminating water 
quality as a limiting factor to stream health across the whole watershed solely by adding CPs is 
unlikely.  

  

                                                           
3 Ignoring other sources of water quality pollutants in the watershed (e.g., urban runoff, point 
sources, and concentrated animal feeding operations). 
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Figure 13. Forecasted biological conditions in conservation scenarios. Biological conditions 
included an Index of Biotic Integrity (IBI), relative abundance of piscivorous species (Piscivore 
Index), and sensitive species richness. EC = erosion control practices implement, EC & NM = 
erosion control practices and nutrient management implemented; B = Baseline conditions; G = 
Grassland scenario; H = treated farm acres in high-need, H,M = treated farm acres in high- and 
moderate-need, H,M,L = treated farm acres in high-, moderate-, and low-need. 
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Figure 14. Forecasted benefits of additional investment in agricultural conservation practices for 
improving stream biological conditions, measured as the change from Baseline conditions in the 
stream kilometers (% of watershed) water quality was not limiting stream fish communities or 
the change in sensitive species richness.  Biological conditions included an Index of Biotic 
Integrity (IBI), relative abundance of piscivorous species (Piscivore Index), and sensitive species 
richness. EC = erosion control practices implement, EC & NM = erosion control practices and 
nutrient management implemented; H = treated farm acres in high-need, H,M = treated farm 
acres in high- and moderate-need, H,M,L = treated farm acres in high-, moderate-, and low-need. 
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Table 9. Benefits of increasing investment in agricultural conservation practices relative the 
Grassland scenario, which represents an upper benchmark in potential stream biological 
conditions. EC = erosion control; EC & NM = erosion control and nutrient management; High = 
treated farm acres in high-need; High & Mod. = treated farm acres in high- and moderate-need; 
All = treated farm acres in high-, moderate-, and low-need; ●= minimal benefit; ● = maximum 
benefit. 
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Figure 15. Return on investment of different conservation scenarios. Return on investment was 
estimated as the change in biological metrics from baseline conditions in streams (% of 
watershed) no longer limited by water quality divided by the estimated annual cost ($ million) of 
a conservation scenario. Biological conditions included an Index of Biotic Integrity (IBI), 
relative abundance of piscivorous species (Piscivore Index), and sensitive species richness. EC = 
erosion control; EC & NM = erosion control and nutrient management. 
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Relationships between Biological Improvements and Percent Reductions in Agricultural Runoff 

A quadratic relationship best described how fish community health would respond to 
reductions in agricultural inputs in WLEB subwatersheds (Table 10). Coefficient estimates 
suggest a concave-up relationship for the IBI and a concave-down relationship for the Piscivore 
Index (Table 11), although plots of these relationships show they only slightly differ from 
linearity for both biological metrics (Figure 16). These findings suggest that large reductions in 
agricultural inputs would be necessary maximize improvement in the IBI, whereas piscivorous 
fish would benefit with more moderate reductions in agricultural inputs. Based on these 
relationships, we would expect stream biological conditions to improve nearly linearly with 
increasing reductions in agricultural NPS inputs, but to slow down as reductions approach ~80% 
and ~40% for the IBI and Piscivore Index, respectively.  
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Table 10. Model selection statistics for mixed models describing the relationship between 
streams that were not limited by water quality and percent reductions in agricultural inputs. A 
lower AICc  indicates a more parsimonious model. Models within two AICc units of the best 
model (∆ AICc  ≤ 2) are generally considered equally parsimonious (Burnham and Anderson 
1998). The models compared were a linear model, a quadratic model, and an intercept-only 
model (Null). The R2

marginal describes to the amount of variance explained by the fixed effect 
component of the model (i.e., reduction in agricultural inputs) and the R2

condition describes the 
total amount of variance explained by the model (Nakagawa and Schielzeth 2013). 

IBI   
Model AICc ∆ AICc R2

marginal R2
conditional 

Linear 6094.42 382.61 0.41 0.89 
Quadratic 5711.81 0.00 0.42 0.93 
Null 9078.25 3366.44 0.00 0.28 

Piscivore Index   
Linear 7200.67 667.53 0.30 0.86 
Quadratic 6533.14 0.00 0.35 0.92 
Null 9840.34 3307.20 0.00 0.28 
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Table 11. Coefficient estimates (± 1 S.E.) from hierarchical models examining relationships 
between reductions in agricultural inputs (% Reduction) and biological benefits, as measured by 
the percentage of a streams within a subwatershed not limited by water quality. Boldface 
indicates statistically significant estimates based on the parametric bootstrap. IBI = Index of 
biotic integrity; Piscivore Index = Relative abundance of piscivorous fishes. Note that 
coefficients are for standardized reductions in agricultural inputs and logit-transformed 
biological metrics. 

Stream fish community metric Intercept % Reduction %Reduction2 

IBI 0.86 (0.07) 1.22 (0.03) 0.21 (0.02) 
Piscivore Index 1.80 (0.09) 1.33 (0.04) -0.13 (0.03) 
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Figure 16. Relationships between stream biological benefits, measured as the percentage of 
stream kilometers where biological conditions were not limited by water quality within a 
subwatershed, and percent reduction in agricultural inputs relative to estimated conditions during 
1990-2010. Dashed lines show the estimated relationships from linear models and solid lines 
show estimated relationships from quadratic models. Points show the forecasted percentage of 
each subwatershed that was not limited by water quality with reductions in agricultural input. 
Darker points indicate a higher number of overlapping subwatersheds. Note that the linear 
relationship appears non-linear because data were logit-transformed for analyses but are shown 
on their original scale (0-100%). The quadratic model was identified as the best model for both 
the IBI (Index of Biotic Integrity) and the Piscivore Index (Relative abundance of piscivorous 
fishes).  
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Example of Subwatershed Prioritization 

Thus far, we have presented results that integrate responses across the watershed. 
However, owing to the spatially-explicit nature of our watershed model, we also had the ability 
to explore how different scenarios might influence subwatersheds within the WLEB. Here, we 
provide an example of coupling physical and biological models to prioritize subwatersheds for 
CP implementation. Importantly though, this example is meant to demonstrate the potential 
utility of this approach to inform watershed management. The criteria we used should be 
modified to address specific management questions. 

In general, we found heterogeneity in the response of biological conditions within the 
WLEB to reductions in agricultural runoff (Figure 17). For example, with a 40% reduction in 
agricultural inputs, the average change in IBI scores ranged from 0 to 0.15 across subwatersheds, 
whereas the average change in the Piscivore Index ranged from -0.15 to 0.29. This large 
variation in biological responses suggests that reducing agricultural inputs, and thus, CP 
implementation, may have larger benefits in some subwatersheds than others. 

From this analysis, we identified 79 subwatersheds based on the IBI and 70 
subwatersheds based on the Piscivore Index that should be prioritized for additional CPs because 
the average change in biological conditions exceeded the 80th percentile (Figure 18). Of these, 30 
subwatersheds were identified as a priority for both metrics and 15 of these also had an 
agricultural threat index ≥ 2. Using our biological and threat criteria, these 15 subwatersheds 
would be identified as the focus of agricultural conservation efforts because they show the 
highest potential for improved biological health with reduced agricultural inputs and row-crop 
agriculture appears to represent the dominant threat in them.  

An important limitation of this approach is that we were unable to separate biological 
benefits that resulted from local reductions in agricultural inputs (i.e. within a subwatershed) 
from cumulative reductions in upstream agricultural inputs. Stream networks are connected 
longitudinally by stream flow (Ward 1989); with upstream inputs influencing downstream 
conditions (Alexander et al. 2000, Peterson et al. 2001, Dodds and Oakes 2008). Thus, priority 
subwatersheds located further down within drainage networks may not benefit as much as 
expected from local reductions in agricultural inputs if upstream sources are not also addressed. 
This suggest that prioritization schemes based on our approach should consider prioritizing 
“headwater” subwatersheds first, because we have more confidence that forecasted benefits were 
the result of local reductions in agricultural inputs. 

Another important limitation is that while we validated our SWAT model and biological 
models, they are still models of reality, and some degree of error is likely in regards to the spatial 
distribution of agricultural inputs and expected benefits. Therefore, we recommend that our 
approach should be combined with on-the-ground knowledge of the watershed by local 
stakeholders to ensure that practices are getting to the right places. We also suggest that case 
studies in smaller subwatersheds, using our approach to guide the placement of practices with 
extensive pre- and post-monitoring, would be extremely beneficial for validating our approach. 
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Figure 17. Histograms of the average changes in biological conditions that occurred within a 
subwatershed when agricultural inputs were reduced by 40% in the WLEB. This 40% reduction 
represents a manual reduction in nutrient and sediment inputs from agricultural land-uses. The 
solid black lines indicate the 80th percentile threshold for changes in biological conditions. 
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Figure 18. Subwatersheds within the WLEB that could be prioritized for conservation practices 
when agricultural inputs were reduced by 40%. This 40% reduction refers to both nutrients and 
sediments. These “biological priority” watersheds were ones in which the average change in 
stream biological conditions was in the 80th percentile for the index of biotic integrity (change ≥ 
0.067) or the relative abundance of piscivorous species (change ≥ 0.20). The combined map 
shows priority subwatersheds where both biological metrics were identified as priorities. 
Subwatersheds outlined in bold are those where row-crop agriculture was identified as a 
dominant threat and agricultural conservation practices could provide benefits towards 
improving stream health. 
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Potential for “Win-Wins” for Lake Erie Water Quality Management and Stream Conservation 

 Water quality management in the WLEB is currently focused on reducing phosphorus 
loading to Lake Erie, with less consideration for improving stream water quality and biological 
health. As a result, the amount to which CPs may simultaneously benefit the related but unique 
conservation endpoints of Lake Erie and WLEB streams remains unclear. We used our 
conservation scenarios to quantify the potential benefits of CPs for reducing spring nutrient and 
sediment loading from four major WLEB tributaries (Maumee River, Portage River, River 
Raisin, and Sandusky River). We then compared Lake Erie TP loading reductions to stream 
benefits to identify potential “win-wins” for Lake Erie and stream conservation as the result of 
additional CP implementation. 

 Our modeling suggests that large reductions in spring nutrient and sediment loading to 
Lake Erie were possible with additional CP implementation (Figure 19). Similar to results for 
stream biological conditions, widespread implementation appears necessary to achieve large 
reductions in NPS pollution to Lake Erie. Treating only those farm acres in high-need resulted in 
average reductions that were 8-fold and 4-fold less than treating farm acres in high- and 
moderate-need for SS and nutrients, respectively. Moreover, treating only high-need acres would 
likely fail to meet TP loading goals for the WLEB as established by the Great Lakes Water 
Quality Agreement (GLWQA 2016); however, TP loading goals could potentially be met with 
additional CP implementation (e.g., moderate-need acres also treated with CPs; Keitzer et al. 
2016; Appendix C). This result, that widespread implementation is needed to achieve water 
quality goals, is supported by other watershed-scale studies attempting to quantify the water 
quality benefits of CPs in the Great Lakes Basin (Hobbs et al., 2002; USDA NRCS 2011; 
Einheuser et al. 2012, Bosch et al. 2013, Scavia et al. 2016, USDA NRCS 2016). For example, a 
recent multi-model simulation study found that at least 25% of the WLEB watershed would need 
CP treatment to meet the TP loading goal, while more than 50% would need CP treatment to 
meet the dissolved reactive phosphorus loading goal recommended by the GLWQA (Scavia et al. 
2016).  

 While our results suggested that implementing CPs would benefit both Lake Erie and 
streams in its watershed, the nature of CP implementation can greatly affect the degree to which 
stream health improves (Figure 20). For example, treating farm acres in high- and moderate-need 
with only erosion control CPs should help achieve the 40% TP loading reduction for Lake Erie 
(GLWQA 2016); however, the benefits for stream biological conditions were much less than was 
possible in more intensive conservation scenarios. To achieve a “win-win” for Lake Erie and its 
surrounding WLEB tributaries, wider implementation of erosion control CPs and nutrient 
management is necessary.  
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Figure 19. Forecasted benefits of additional investment in agricultural conservation practices for 
reducing spring nutrient and sediment loading into Lake Erie, measured as the change from 
baseline conditions in total spring loading from the Maumee River, Portage River, River Raisin, 
and Sandusky River. EC = erosion control practices implement, EC & NM = erosion control and 
nutrient management practices implemented; H = treated farm acres in high need, H,M = treated 
farm acres in high and moderate need, H,M,L = treated farm acres in high, moderate, and low 
need. 
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Figure 20. Comparison of potential benefits of additional investment in agricultural conservation 
practices for reducing spring total phosphorus (TP) loading to Lake Erie and improving stream 
biological conditions. Stream benefits were assessed as the increase in stream kilometers where 
water quality was no longer limiting fish community metrics or the change in mean sensitive 
species richness from baseline conditions. The dashed line indicates the target TP load for Lake 
Erie. IBI = Index of Biotic Integrity; Piscivore Index = Relative abundance of piscivorous fishes. 
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Progress Update on Climate Change Scenarios 

 A better understanding how climate change may alter the effectiveness of CPs is needed 
to inform adaptive-management in the WLEB. We are currently running simulations using 
outputs from 20 global climate models and two greenhouse gas emission scenarios (RCP4.5 – 
this scenario emphasizes climate change mitigation and RCP8.5 –assumes a business as usual 
scenario with emissions continuing to rise unabated into the future) to understand how projected 
climate changes alters biological conditions in our conservation scenarios. We only selected the 
conservation scenarios that included erosion control practices and nutrient management because 
(1) we wanted to limit the total number of simulations because of the computationally 
demanding nature of these simulations and (2) these were the most effective scenarios for 
improving stream biological conditions. To date, we have hind-cast (1986-2005) water quality 
conditions for all climate change scenarios and global climate models for the Baseline scenario. 
This was done to evaluate model performance and develop computer programs for post-
processing of simulation outputs.  As of July 20, 2016, these retrospective simulations are 
finished and we have developed the necessary computer programs to process data. We are now 
running simulations for future conditions (2016-2065) on the Ohio State University’s Super 
computer high performance computing facilities. We anticipate completing all necessary 
simulations and data analysis by early fall (i.e., early October).  
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RECOMMENDATIONS FOR IMPROVING OUR APPROACH 

 For this project, we used a state-of-the-art, high-resolution SWAT model and integrated it 
with other biological, physical, economic models in a way that was both novel and 
comprehensive. Thus, we have confidence in modeling results.  However, as with any modeling 
study, limitations to our approach existed.  Below, we offer several ways to improve our ability 
to use models to better inform the use of CPs in conservation policy and program development. 

• While our modeling was able to estimate how CPs could benefit stream fish 
community health by improving water quality, our suggested benefits of CPs may be 
an underestimate because our modeling did not account for likely improvement to in-
stream (e.g., in-stream cover, riffle/run/pool quality, stream temperature) and riparian 
habitat that would be associated with reduced nutrient and sediment runoff. In-stream 
habitat can be an important driver of stream health (e.g., Miltner 2010, Munn et al. 
2010) and studies suggest that CPs not only improve water quality, but can also 
improve in-stream habitat (e.g., Wang et al. 2002, Wang et al. 2007). Healthy riparian 
zones also offer numerous benefits to stream ecosystems.  For example, increased 
riparian cover and nutrient sequestration could reduce in-stream nuisance algal 
growth even at high nutrient concentrations (Munn et al. 2010), while also reducing 
in-stream water temperature and increasing food subsidies to macroinvertebrates at 
the base of the food web.  Thus, quantifying the benefits of CPs on in-stream habitat, 
riparian habitat, and water quality, as well as their potential interactions, would 
provide a more complete picture of the potential for CPs to improve stream 
ecosystems. 

• While CPs are expected to benefit stream health, our modeling approach was unable 
to predict the time-course of these benefits, once CPs are implemented. While the 
physical models are technically capable of allowing for such assessments (i.e., daily 
predictions exist), our biological models are not temporally explicit. In large part, our 
inability to make time-based predictions stemmed from an incomplete mechanistic 
understanding of how water quality influences fish communities, as well as a lack of 
temporally explicit biological monitoring data. Further, the necessary experimental 
studies conducted at the realistic spatial and temporal scales do not yet exist to allow 
temporally explicit predictions to be made or tested. Thus, while evidence is 
accumulating that biological conditions in the WLEB will respond positively to 
habitat improvements (Miltner 2015), an understanding of how accurate our 
predictions are, as well as how long recovery would take, is missing. For this reason, 
research aimed at understanding the response-time of water quality and stream to 
improved habitat conditions would help inform realistic expectations.  

• A test case in a smaller subwatershed that uses our approach to identify areas to 
optimally place CPs, with intensive stream monitoring before and after 
implementation, would help validate our approach of linking physical and biological 
models to inform strategic conservation.  

• Comparing similar but different modeling efforts would help improve confidence in 
our results. Using this type of “ensemble” approach has proven effective in 
quantifying potential CP benefits for managing Lake Erie water quality (e.g., Scavia 
et al. 2016). We would expect that more studies at the watershed-scale that focus on 
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stream ecosystem health would similarly benefit watershed conservation in 
agricultural landscapes.  

• Continued support of stream sampling and monitoring of water quality and biological 
conditions is vital. Without this data, our project would not have been possible. 
Moreover, this data is essential for monitoring stream health and informing adaptive 
management within the WLEB. It is essential that this data sampling is intensive and 
widespread to show improvements in water quality (Betanzo et al. 2015).  

• Our conservation scenarios highlight the need for new practices, policies, or 
technologies that are able to more efficiently reduce agricultural inputs than we 
simulated. We only considered practices that were in wide-use in the WLEB and 
practices that we did not include, such as targeted wetland restoration or drainage 
water management, should be included in future conservation scenarios to quantify 
their potential benefits. 

• The need exists for research that integrates non-social and social components of 
conservation policy within agricultural landscapes. For example, how likely is it that 
the practices and policies identified as being effective through modeling efforts will 
be adopted by WLEB farmers? How do attitudes about stream health improvements 
influence adoption rates? We strongly encourage consideration of stakeholder group 
and manager opinions and attitudes, as their consideration has been shown to be 
integral to successful CP implementation in other agricultural settings (e.g., Prokopy 
et al. 2008). 
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CONCLUSIONS AND IMPLICATIONS 

 Our results demonstrate that agriculture is a major contributor to water quality issues in 
WLEB streams and highlight the integral role for CPs to improve agricultural sustainability in 
this watershed. Returning to critical outstanding questions this project sought to address, we 
found: 

1. How much additional CP implementation is needed to improve stream water quality and 
fish community health, both now and under a changing climate? 

• Our results suggest that widespread implementation is necessary to provide 
meaningful benefits to stream water quality and biological health within the 
WLEB. While treating high-needs acres, which comprise ~8% of farm acres 
(USDA NRCS 2011) with erosion control and nutrient management practices 
would certainly provide some benefit to WLEB’s vast stream network, these 
represented relatively small improvements compared to what may be possible 
with more widespread implementation. For example, treatment of high-needs 
acres with both CP types would result in Piscivore Index still being limited by 
water quality in 50% of streams, only a 4% improvement from Baseline 
conditions. By contrast, treatment of farm acres with moderate- and low-needs 
(~48% of all farm acres; USDA NRCS 2011) with both types of CPs would 
remove water quality limitation of the Piscivore Index in 72% of the watershed. 
Our results show that widespread additional implementation of CPs, ideally 
across all farm acres, is needed to help mitigate water quality impairment from 
agricultural inputs. These findings are supported by both empirical (Wang et al., 
2002) and modeling (Einheuser et al. 2012) studies that have also found 
widespread implementation of CPs is needed to address the impacts of 
agricultural NPS pollution on stream ecosystems. 

2. Which types of CPs are most beneficial and cost-effective? 
• We found that including nutrient management in addition to erosion control CPs 

provided the largest benefits for stream fishes and generally represented the most 
cost-effective management strategy. This was likely because, while erosion 
control CPs were effective at reducing TP and SS concentrations in streams, they 
were less effective than also including nutrient management at reducing TN 
concentrations. Our results suggest that addressing TN, TP, and SS is needed to 
improve stream fish communities. High levels of these stressors were present 
throughout the watershed, often co-occurring, each with the potential to limit 
stream fish communities. Addressing these multiple stressors through a variety of 
practices may therefore be necessary to remove water quality limitation of stream 
biological conditions throughout the watershed. 

3. How much financial investment is needed to achieve meaningful benefits in stream 
health? 

• Because widespread implementation appears needed and multiple CPs appear 
necessary to reduce both nutrient and sediment inputs, additional financial 
investments beyond current conservation practice adoption investments appear 
necessary if we want to achieve a “win-win” for both Lake Erie water quality and 
WLEB stream biological health. Our cost estimates ranged from an additional 
$4.5 million annually to implement erosion control CPs on high-need acres to 
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$263 million annually to implement erosion control CPs and nutrient management 
on all farm acres. Importantly, even if an additional $263 million were spent 
annually, water quality still is predicted to limit stream fish communities in a 
large portion of WLEB streams. While these costs and benefits are estimates, and 
more cost-effective strategies could be developed, they do suggest that substantial 
financial investments are needed to improve water quality and fish community 
health throughout the WLEB’s vast stream network. 

4. Where in the watershed will the implementation of CPs be most beneficial? 
• We believe that our approach of coupling physical and biological models can be 

used to help identify subwatersheds where CPs will likely be most effective at 
improving stream fish community condition. Our modeling found considerable 
variation across the watershed in both the benefits of reducing agricultural inputs 
and the intensity of row-crop agricultural threats. While our results suggest that 
100% of acres need additional CP treatment to mitigate water quality impairment 
from agricultural inputs, identifying areas where benefits are expected to be large 
and agricultural threats are high may help prioritize subwatersheds for initial 
conservation investments. This prioritization is important because it will help to 
maximize in-stream benefits of conservation investments. Moreover, identifying 
subwatersheds where the implementation of practices may result in rapid results 
can help maintain and even gain sociopolitical and financial support for continued 
investment in CPs.  

5. Do potential “win-wins” for Lake Erie water quality management and stream 
conservation exist? 

• Our results suggest that targeting and treating only those areas of the WLEB 
watershed needed to achieve the Lake Erie nutrient reduction goals could leave 
fish communities limited by agricultural NPS pollution in thousands of miles 
stream. However, our results also show that if done strategically, by targeting 
erosion-control and nutrient management practices to areas that maximize 
benefits to Lake Erie and the tributaries, we can substantially increase the benefits 
to stream health across the WLEB watershed. Achieving such “win-win” 
outcomes for Lake Erie and its tributaries is vital given that both support a 
tremendous amount of biodiversity and provide vital ecosystems services to 
residents of Indiana, Ohio, and Michigan. 
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Abstract:

Watershed simulation models are used extensively to investigate hydrologic processes, landuse and climate change impacts, pollutant
load assessments and best management practices (BMPs). Developing, calibrating and validating these models require a number of
critical decisions that will influence the ability of the model to represent real world conditions. Understanding how these decisions
influence model performance is crucial, especially when making science-based policy decisions. This study used the Soil and Water
Assessment Tool (SWAT) model in West Lake Erie Basin (WLEB) to examine the influence of several of these decisions on
hydrological processes and streamflow simulations. Specifically, this study addressed the following objectives (1) demonstrate the
importance of considering intra-watershed processes during model development, (2) compare and evaluated spatial calibration versus
calibration at outlet and (3) evaluate parameter transfers across temporal and spatial scales. A coarser resolution (HUC-12)model and a
finer resolution model (NHDPlus model) were used to support the objectives. Results showed that knowledge of watershed
characteristics and intra-watershed processes are critical to produced accurate and realistic hydrologic simulations. The spatial
calibration strategy produced better results compared to outlet calibration strategy and provided more confidence. Transferring
parameter values across spatial scales (i.e. from coarser resolution model to finer resolution model) needs additional fine tuning to
produce realistic results. Transferring parameters across temporal scales (i.e. from monthly to yearly and daily time-steps) performed
well with a similar spatial resolution model. Furthermore, this study shows that relying solely on quantitative statistics without
considering additional information can produce good but unrealistic simulations. Copyright © 2015 John Wiley & Sons, Ltd.
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INTRODUCTION

Watershed simulation models are increasingly used to
investigate policy relevant issues related to hydrologic
topics, landuse changes, climate change impacts, pollut-
ant load assessments and best management practices
(BMPs) (Stone et al., 2001; Veith et al., 2003; Kannan
et al., 2005; Benham et al., 2006; Tuppad et al., 2010;
Daggupati et al., 2011; Knisel and Douglas-Mankin,
2012; Jha and Gassman, 2014). Model practitioners have
the responsibility to make a number of critical decisions
in model development, calibration and validation to
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ensure that the model accurately simulates real world
conditions (Eckhardt et al., 2005; Zhang et al., 2009;
Arnold et al., 2012a; Arnold et al., 2015).
A key step in model development (building a model

for a watershed or study region) is that model
practitioners should have a good understanding of the
watershed characteristics and processes being simulated
and should represent them appropriately in the model.
Incorporating knowledge about watershed characteris-
tics and processes from literature sources and expert
opinion can ensure that models are spatially capturing
the hydrological processes and water balance within
reasonable limits and realistically simulating real world
conditions (Seibert and McDonnell, 2002; Arnold et al.,
2015). For example, Yen et al. (2014a,b) demonstrated
that considering intra-watershed characteristics and
processes produced accurate spatial and temporal results
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that enable the model to provide the right answer for the
right reasons.
In addition to considering watershed characteristics and

processes during model development, decisions about
how models are calibrated further influence the ability of
the model to produce relatively more realistic results
(Eckhardt et al., 2005; White and Chaubey, 2005; Moriasi
et al., 2007; Zhang et al., 2009; Arnold et al., 2012a).
Calibration of a watershed simulation model at a single
site (generally the outlet of a watershed) remains a widely
used calibration strategy (Cao et al., 2006; Wang et al.,
2012). This approach is best used in small watersheds
with fairly uniform characteristics (e.g. soil, slope,
vegetation, meteorology). The use of a single site to
calibrate large watersheds may result in calibrated
parameters which, (1) represent an average of character-
istics over the entire watershed, or (2) present a
combination of over- or underestimated values which
result in poor intra-watershed spatial accuracy. This may
be undesirable for simulations of larger watersheds that
are more spatially heterogeneous. In these cases, spatial
calibration with additional sites is recommended because
larger watersheds may contain varied, complex physical
characteristics (Qi and Grunwald, 2005; Piniewski and
Okruszko, 2011; Cho et al., 2013; Daggupati et al.,
2015). This process better accounts for spatial
biophysicochemical variations and reduces the problem
of non-unique solutions because fewer parameter sets
would satisfy calibration criteria at all sites.
After calibration, the model has to be validated to

demonstrate that a given site-specific calibrated model
can make sufficiently accurate simulations in a new
modeling situation. Several studies have focused on
transferring parameters temporally (from one time period
(e.g. 1990 to 1999) to another (e.g. 2000 to 2010)
(Bingner et al., 1997; Van Liew and Garbrecht, 2003;
Abbaspour et al., 2007; Chaubey et al., 2010; Sheshukov
et al., 2011; Douglas-Mankin et al., 2013; Seo et al.,
2014) and spatially (from gauged to ungauged watershed)
(Vandewiele and Elias, 1995; Xu, 1999; Santhi et al.,
2001; Merz and Blöschl, 2004; Santhi et al., 2008; Parajuli
et al., 2009; He et al., 2011; Kumar et al., 2013a,b) to
validate the performance of the model. However, little is
known about model performance when calibrated param-
eters are transferred across temporal and spatial scales. For
example, how would the model perform if the parameters
are transferred across a temporal scale, i.e. from one time-
step (e.g. monthly) to another time-step (e.g. daily)? Or
howwould the model perform if parameters are transferred
across spatial scales such as a coarser resolution model to a
finer resolution model within the same watershed?
Transferring original parameters across spatial or temporal
scales might be one way to save on time without sacrificing
model performance. An attempt was made by Troy et al.
Copyright © 2015 John Wiley & Sons, Ltd.
(2008) to evaluate the effects of parameter transfer across
spatial and temporal scales using a global land surface
model known as Variable Infiltration Capacity (VIC).
VIC was used to model the entire continental United
States, and the results suggested that the transfer of
parameters across temporal scales performed better than
transfer across spatial scales. Troy et al. (2008) also
emphasized the need for more studies using hydrologic
models to determine if transferring parameters across
scales is a viable validation option for producing realistic
results.
This paper focuses on understanding how decisions in

model development, calibration and validation influence
model realism and ensure that watershed simulations
provide the information needed to support science-based
policy decisions. This research was motivated by the need
to provide a realistic hydrologic simulation for a large
watershed at a finer spatial resolution to inform policy
decisions in the West Lake Erie Basin (WLEB). The
major objectives of this study were to utilize the Soil and
Water Assessment Tool (SWAT) model in the WLEB to
(1) demonstrate the importance of considering intra-
watershed processes during model development (2)
Compare and evaluate spatial calibration versus calibra-
tion at an outlet and (3) evaluate parameter transfers
across temporal and spatial scales. In this study, we
developed a SWAT model at the 12-digit Hydrologic
Unit Code (HUC-12) resolution and another at the
National Hydrography Dataset (NHDPlus) resolution.
Objective 1 and 2 were examined using the HUC-12
resolution model, and objective 3 was examined using
both the HUC-12 and the NHDPlus resolution model.
STUDY AREA

The WLEB watershed drains 28330km2 encompassing the
Maumee River, Sandusky River to the south and the Raisin
River in the north (Figure 1). There are over 23000km of
natural and man-made streams in the watershed, which
covers portions of Indiana (17%), Michigan (17%) and
Ohio (76%). Other major rivers include the Portage,
Sandusky, Blanchard, Auglaize, St. Marys, St. Joseph and
Tiffin. There is little topography, with elevation ranging
from 246m to 387m and an average slope of 2%. Average
annual precipitation ranges from 838 to 940mm.
Prior to European settlement, the watershed primarily

consisted of Beech, Maple, Ash and Elm forests (Sears,
1941). The Great Black Swamp, a large wetland
(>3800 km2) located centrally in the watershed, was a
major landscape feature (Kaatz, 1955). Widespread forest
clearing and wetland draining began in the mid-19th

century (Kaatz, 1955). The watershed is now predomi-
nantly agricultural, with more than 70% of the land in
Hydrol. Process. 29, 5307–5320 (2015)



Figure 1. The study area—West Lake Erie Basin (WLEB) with major rivers and HUC-8 watershed boundaries. The insert shows continental United
States with the study area shaded
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cultivated cropland, the majority of which is in corn–
soybean crop rotations. Tile drainage is used extensively
throughout the watershed. The next most dominant land
uses, forested and urban land use, each make up about
12% of the watershed.
The widespread conversion of native vegetation to

agriculture and associated drainage practices (e.g. stream
channelization) have degraded freshwater habitat quality
and negatively affected freshwater biodiversity
(Trautman, 1939; Trautman and Gartman, 1974; Karr
et al., 1985). Additionally, the Maumee River appears to
be a major contributor to eutrophication and the recent
increase in harmful algal blooms in Lake Erie (Kane
et al., 2014). These freshwater conservation and human
health concerns require a finer resolution hydrologic
model that realistically simulates hydrologic processes to
allow policy makers to make informed decisions related
to improve conditions in the WLEB.
DATA INPUTS AND MODEL SETUP

The latest version of SWAT, ArcSWAT 2012 (rev 593)
for ArcGIS10.1 Geographic Information System inter-
face, was used to set up the SWAT model. The SWAT
model is a continuation of nearly 30 years of modeling
efforts by the USDA Agricultural Research Service
(ARS) and is widely used, watershed-scale, process-
based model (Gassman et al., 2007; Douglas-Mankin
Copyright © 2015 John Wiley & Sons, Ltd.
et al., 2010; Arnold et al., 2012a). The model is supported
by online documentation (Neitsch et al., 2011; Arnold
et al., 2012b) which reviews all processes simulated with
the model. The ArcSWAT interface allows importing pre-
defined watershed boundaries and streams along with
automatic delineation of streams and subwatersheds (Luo
et al., 2011). This function was employed to develop two
models, a HUC-12 model based on a predefined HUC-12
Watershed Boundary Dataset (WDB) and a more detailed
NHDPlus model using the National Hydrography Dataset
(NHD) and NHD-plus stream network. The HUC-12
WBD (1: 240 000 scale) was downloaded from http://
datagateway.nrcs.usda.gov and is a coordinated effort
between the United States Department of Agriculture-
Natural Resources Conservation Service (USDA-NRCS),
the United States Geological Survey (USGS) and the
Environmental Protection Agency (EPA). The NHDPlus
data consists of NHD Plus (Version 2) streams and
catchments at scale of 1: 100000 and was downloaded
from http://www.horizon-systems.com/NHDPlus/index.
php. The NHDPlus framework is a coordinated effort
by the EPA Office of Water and the USGS. A 30-m
Digital Elevation Model (DEM) was used to define the
topographical characteristics for each model. A total of
391 and 11128 subbasins, respectively, were character-
ized for HUC-12 and NHD Plus setup in the Western
Lake Erie Basin (Figure 2). The average size of the
subwatersheds in the HUC-12 model was 72 km2 (range,
25 to 191) while the average watershed size in the
Hydrol. Process. 29, 5307–5320 (2015)
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Figure 2. HUC-12 (coarse resolution) and NHDPlus (finer resolution) subwatersheds in WLEB
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NHDPlus model was 2.6 km2 (range, 0.001 to 80).
Developing SWAT model at NHDPlus resolution is first
of its kind, and no studies were reported in literature that
used SWAT at such finer resolution.
Land use was defined using 2010 and 2011 Crop Data

Layers (CDLs). The data was processed using techniques
recommended by Srinivasan et al. (2010) to prepare a
single 30-m resolution landuse/landcover layer which
includes major crop rotations. Soils were derived from
STATSGO (USDA-NRCS, 1995) at a scale of 1: 250 000.
All soil properties needed for the SWAT model were
extracted from the national STATSGO layer and
processed with the ArcSWAT interface.
Land use, soils and slope (derived from DEM) were

intersected within each subbasin by ArcSWAT to create
unique Hydrologic Response Units (HRUs). Three slope
classes (0%–2%, 2%–5% and >5%) were used with
landuse, soil and slope (by class) thresholds of 50/50/
50ha. All agricultural crops were exempt from landuse
thresholds such that all agricultural crops were included
as HRUs. A total of 13156 and 34 807 HRUs were
derived in the WLEB using the HUC-12 and the
NHDPlus models.
Both models included daily precipitation and temper-

ature data from 1960 to 2010. This data was derived from
the National Oceanic and Atmospheric Administration
(NOAA) Cooperative Observer network and Weather-
Bureau-Army-Navy stations. Missing data at each station
was supplied using an inverse distance weighted
interpolation algorithm and observations from the nearest
five stations.
Tile drain systems are designed to remove excess field

water and lower water tables to reduce crop stresses and
allow timely field tillage and planting. However, no clear
record of tile locations was available in this basin. It was
therefore assumed that tile drains occur in agricultural
areas that are located in poorly drained soils and have a
Copyright © 2015 John Wiley & Sons, Ltd.
slope less than 1%. Poorly drained soils were identified
within the basin by processing SSURGO soil using soil
data viewer 6.0 program (http://www.nrcs.usda.gov/wps/
portal/nrcs/detailfull/soils/home/?cid=nrcs142p2_053620)
in ArcGIS.
SWAT management operations (i.e. planting, tillage,

harvest and fertilizer application) were assembled from a
variety of sources. Operation scheduling was derived
from management templates developed by the NRCS for
the RUSLE2 model (Foster, 2005). Cropland tillage was
derived from Baker (2011). SWAT plant growth-related
parameters were developed from local weather statistics.
Cropland fertilization was derived from NASS reported
county average crop yields. Data was processed and
combined into SWAT format management files using
software written specifically for this purpose.
Measured streamflow from 12 gauge stations (Figure 3,

Table I) was collected from 1 January 1990 to 31 December
2006. The data was used during calibration and validation
to facilitate spatial calibration and validation assessments.
METHODS

Intra-watershed processes

The majority of the WLEB is comprised of agricultural
land of which more than 85% have tile drainage systems
implemented to facilitate artificial drainage and to improve
crop yields and field trafficability. Tile drainage is an
important and major intra-watershed process in the basin.
Representing tile drain in the SWAT model was necessary
to accurately capture the spatial hydrological processes
and water balance within the watershed. This study
evaluated the effects of tile drain to demonstrate the
importance of considering intra-watershed processes
within the watershed during model development and
simulations. The default SWAT model (without
Hydrol. Process. 29, 5307–5320 (2015)
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Figure 3. Five regions (separated with thick black border), five head watersheds (represented in shaded colors), and calibration and validation locations
in WLEB
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calibration) was used to evaluate the effectiveness of tile
drains in capturing the overall hydrologic water balance in
the watershed. Tile drain parameters including depth to
drain (DDRAIN), time to drain (TDRAIN), drain lag time
(GDRAIN) and depth to impervious layer (D_IMP) were
changed to 1500 (mm), 48 (h), 24 (h) and 1200 (mm),
respectively. These tile drain parameters values were based
on expert opinions of watershed specialists working in the
watershed. The computation of the daily CN value as a
function of plant evapotranspiration (ICN=1) was used
because the default soil moisture method (ICN=0) was
predicting too much runoff in shallow soils (Yen et al.,
2014c). ICN=1 (plant-based ET) and ICN COEF=0.5
along with other tile drain parameters reduced surface
runoff and transferred that water as tile flow and thereby
simulated tile drains reasonably well in the watershed. The
SWAT model was simulated from 1990 to 1999 and a
3-year warm-up period (1987 to 1989) was used prior to the
model simulation period as recommended by Daggupati
et al. (2015). Average annual hydrologic components
(surface runoff, ground flow, lateral flow and tile flow) of
the water balance along with quantitative statistics and
graphical comparisons (discussed in the next section) at
R4-H gauge station (Figure 3) were used to assess the
performance of simulations with and without tile drains.
Spatial and outlet calibration

The default model after the inclusion of tile drain
information (a major intra-watershed process) needed to
be calibrated to increase the accuracy of model predic-
Copyright © 2015 John Wiley & Sons, Ltd.
tions. A regular calibration procedure where the model is
calibrated using observed and simulated data at the outlet
may not work well in the WLEB because of the large size
of this watershed and potential spatial variability within
the basin. In order to capture this spatial variability,
spatial calibration is needed. We used a proxy-basin
spatial calibration strategy originally proposed by Klemes
(1986) and summarized by Daggupati et al. (2015). This
strategy involves calibration of a model in a gauged
watershed and transferring calibrated parameters to
nearby or adjacent watersheds within the same eco-
region. Further, a spatial validation is performed at
various locations to evaluate the performance of model.
The logic behind this method is that in a similar eco-
region, the climate and watershed conditions vary
smoothly over space and the parameters in the region
are expected to be similar (Jin et al., 2009).
The WLEB was divided into five different regions (R1,

R2, R3, R4 and R5) (Figure 3, Table I). R1, R2 and R3
drain into Maumee River, R4 drains into Sandusky and
Cedar-Portage rivers while R5 drains into Raisin and
other adjacent tributary rivers. During separation of the
regions, landuse, soil, slope and precipitation were used
to visualize the spatial variability within the basin. HUC-8
watershed boundaries within the basin were used as
guidelines to separate regions. A head watershed (shaded
areas in Figure 3) was selected in each region and was
calibrated and validated using a temporal split-sample
approach in which one period (1990 to 1999) was used
for calibration and another period (2000 to 2006) was
used for temporal validation. After satisfactory calibration
Hydrol. Process. 29, 5307–5320 (2015)
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results in head watersheds in five regions (based on
quantitative statistics and graphical comparisons as
discussed later), the parameters were transferred to other
watersheds in the region. Spatial validation was performed
at various locations (Figure 3, Table I) within the transferred
region and also at two outlet locations along the Maumee
River. During the process of validating themodel in regions,
the temporal split-sample approach, as discussed previous-
ly, was used to complete a comprehensive evaluation and
thereby accomplishing spatial calibration.
During the calibration of head watersheds, SWAT was

manually calibrated to make sure that the hydrology,
overall water balance and general seasonal patterns within
the watershed were captured. Additional automated
calibration was done using the Sequential Uncertainty
Fitting version-2 (SUFI-2) routine in SWAT-CUP
program. A monthly time-step was used during
calibration. Quantitative statistics and criteria recom-
mended by Moriasi et al. (2007) were used to evaluate
the simulation performance. The quantitative statistics
applied in this study were Nash–Sutcliffe simulation
efficiency (NSE) and percentage bias (PBIAS). The
model performance for monthly and daily streamflow
can be categorized into four classes according to the
threshold NSE, and PBIAS values: very good
( 0 . 7 5 <N S E ≤1 . 0 0 , P B I A S <± 1 0 ) ; g o o d
(0.65<NSE ≤0.75, ±10 ≤PBIAS<±15); satisfactory
(0.50<NSE≤0.65, ±15≤PBIAS<±25); and unsatisfac-
tory (NSE≤0.50, PBIAS≥ ±25). Graphical comparisons
of time-variable plots of observed and simulated flow
provide important insights into model representation of
hydrographs, baseflow recession and other pertinent
factors often overlooked by quantitative comparisons. In
this study, visual comparisons of hydrographs between
observed and simulated were evaluated, and the simula-
tion was considered satisfactory only when the shapes
(peaks and base flow) of observed and predicted
hydrographs were similar.
Figure 4. NSE values at various locations in the basin using a)

Copyright © 2015 John Wiley & Sons, Ltd.
Outlet calibration strategy was tested by performing an
auto calibration using SUFI-2 routine in SWAT-CUP
program at a monthly time-step utilizing streamflow at the
outlet (O-V2 location, Figure 3). After calibration, the
quantitative statistics and graphical comparisons at various
locations within the watershed were evaluated. The model
performance using spatial and outlet calibration strategies
were compared and analysed. In this study, graphical
representation of quantitative statistics (only NSE) for
spatial and outlet calibration strategies at various locations
within WLEB is shown in Figure 4 to have a better view of
results spatially and would ensure a more comprehensive
evaluation ofmodel performance based on recommendation
by Saraswat et al. (2015).

Transfer of parameters across scale

Transferring parameters across scales may be desirable
as a part of validation option to adapt models to address
new issues beyond their original intent. Developing and
calibrating a new model to address these new issues may
be time consuming. This study investigated the model
performance after transferring parameters across spatial
and temporal scales to determine if this is a viable option
to address novel issues beyond the scope of the original
models intent. We transferred parameters from a spatially
calibrated and validated HUC-12 model (coarser resolu-
tion model) at a monthly time-step to NHDPlus model
(finer resolution model) to evaluate the impacts of
transferring parameters across spatial scale. Next, in the
HUC-12 model, we transferred parameters to daily and
yearly time-step to evaluate the temporal scale effects
where the model was calibrated on monthly time-step.
Also, the temporal scale effects in the NHDPlus model
were also evaluated on daily and yearly time-step after the
transfer of parameters from a monthly time-step calibrated
HUC-12 model. In both the cases, quantitative statistics
and graphical criteria (temporal time series plots) at
the outlet (O-V2) and one another location (R4-H)
spatial calibration strategy and b) outlet calibration strategy

Hydrol. Process. 29, 5307–5320 (2015)



Figure 5. a) Monthly time series comparison in S1, S2 and S3 model sim

Table IV. Quantitative statistics at head watershed lo

Calibration
strategy

Time
period

R1-H R2-H

NSE PBIAS NSE PB

Spatial calibration 1990–1999 0.82 11.89 0.78
2000–2006 0.81 5.21 0.88 �

Outlet calibration 1990–1999 0.74 �3.98 0.75
2000–2006 0.79 �14.88 0.86

Table III. Quantitative statistics for S1, S2 and S3 at R4-H
location

Intra-watershed
processes R2 NS

Median
simulated

Median
observed PBIAS

Without tile (S1) 0.61 0.60 20.22 14.43 �6.95
After tile (S2) 0.69 0.27 31.71 14.43 �57.29
After calibration/
with tile (S3)

0.83 0.82 13.43 14.21 �4.60

Table II. Average annual hydrologic components for S1, S2 and
S3 model simulations for the time period of 1990 to 1999 in

WLEB

Average annual
hydrologic components

S1
(mm)

S2
(mm)

S3
(mm)

% surface runoff
(surface runoff/water yield)

71% 11% 28%

% tile flow tile flow/water yield 0% 60% 53%
% ground water
(ground water/water yield)

28% 28% 15%

% later flow
(lateral/water yield)

1% 1% 3%
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Copyright © 2015 John Wiley & Sons, Ltd.
were used to evaluate the impacts of parameter transfer
across scale.
RESULTS AND DISCUSSION

Impacts of considering intra-watershed processes

Scenario 1 (S1) is used to denote SWAT model
simulation without tile drain and S2 for SWAT model
with tile drain. Scenario 3 (S3) which is a SWAT
model simulation after calibration is also used for
comparison and discussion purposes. However, more
discussion on calibration is given later. Average annual
hydrologic components of the water balance in WLEB
are shown in Table II for S1, S2 and S3 model
simulations. Quantitative statistics are presented in Table
III for all three scenarios using R4-H gauge location
(Sandusky River near Mexico OH) which is in Sandusky
watershed (HUC8, 4100011) and is heavily dominated by
agricultural land (>83%) and is mostly implemented with
tile drains. Graphical comparisons are shown in Figure 5.
The surface runoff contribution without tile drainage (S1)
was 71% (ratio of surface runoff to total water yield),
ulations for the time period of 1990 to 1999 at R4-H gauge location

cations for Spatial and Outlet calibration strategies

R3-H R4-H R5-H

IAS NSE PBIAS NSE PBIAS NSE PBIAS

0.09 0.79 4.81 0.82 �4.72 0.72 0.97
3.90 0.74 26.19 0.81 �5.81 0.69 �8.82
4.73 0.71 13.72 0.75 �10.72 0.65 �9.15
0.21 0.63 25.94 0.73 �15.24 0.62 �19.41
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while tile flow contribution was 0% (ratio of tile flow to
total water yield) (Table II). Monthly quantitative
statistics (Table III) show that the model predictions
were satisfactory and reliable when tile flow was not
included (R2=0.61, NSE=0.60, PBIAS=�6.95). How-
ever, having tile flow contribute 0% to total water yield is
unrealistic for this watershed. Communication with the
experts that work in the watershed suggested that the tile
drain contribution is generally around 50% while the
surface runoff contribution is around 30%. Thus, despite
being unrealistic, the scenario without tile drainage (S1)
produced satisfactory performance statistics (Table III).
Graphical comparisons between observed and predicted
flow data showed that there were differences in timing
and magnitude of peak flows and the shape of recession
curves (Figure 4a). This was primarily because of soft
data such as tile drain information not being included (a
major intra-watershed processes in the watershed) during
model development. When tile drainage was included
without calibration (S2) the surface runoff contribution
was 11%, and the tile flow was 60% (Table II). The
predictions in S2 were more realistic and close to the
opinion of watershed experts. Graphical comparisons of
observed and predicted flow showed that the timing and
magnitude of peak flows and the shape of recession
curves aligned better; however, the predicted flows
were higher than observed (Figure 4b). The quantitative
statistics were poor (R2= 0.69, NSE=0.27, PBIAS=
�57.29) despite more realistic contributions of tile
flow, mainly because the predicted flows were higher
(median observed=14.43, median simulated=31. 71)
compared to observed flows. This is because of the
inclusion of tile drains, which altered the hydrodrological
processes and needs calibration to lower predicted flows
and align better to improve statistics. When tile drainage
was included and the model was calibrated (S3), surface
runoff and tile flow contributed 28% and 53%,
respectively. These contributions were close to the
opinion of watershed experts. Graphical comparison
(Figure 4c) shows that the observed and predicted flows
align with each other and the quantitative statistics were
very good (R2=0.84, NSE=0.82, PBIAS=�4.60). These
results showed that using only quantitative performance
statistics can be misleading and should not be used alone
to make absolute modeling decisions (e.g. Developing
Total maximum Daily Loads (TMDLs) or assessing
the impacts of best management practices). However,
combining quantitative statistics along with graphical
comparisons of time series plots and the incorpora-
tion of literature or expert knowledge to account for
all intra-watershed processes will ensure that hydro-
logical processes and water balance are within
reasonable limits and will produce better and more
reliable predictions.
Copyright © 2015 John Wiley & Sons, Ltd. Hydrol. Process. 29, 5307–5320 (2015)
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Influence of spatial and outlet calibration strategy

Spatial calibration strategy. In the head watershed
locations, the NSE values ranged from 0.72 to 0.82
(mean, 0.80) and PBIAS values ranged from �4.72 to
11.89 (absolute [abs] mean 4.49) during the calibration
period (Table IV). In the temporal validation period, the
NSE and PBIAS ranged from 0.69 to 0.88 (mean, 0.78)
and �8.82 to 26.19 (abs.mean, 9.98) (Table IV). In the
spatial validation locations and in the calibration period,
the NSE ranged from 0.60 to 0.85 (mean, 0.78) and
PBIAS ranged from 4.33 to 17.29 (abs.mean, 9.17) (Table
V). In the temporal validation period, the NSE ranged
from 0.75 to 0.91(mean, 0.84) and PBIAS ranged from
4.42 to 17.27 (abs.mean, 9.99) (Table V). Quantitative
statistics showed that spatial calibration strategy per-
formed very good (based on NSE and PBIAS criteria) in
the headwater watersheds as well as in the spatial
validation locations. The performance was even better
in the in the spatial validation locations, especially in the
temporal validation period (mean NSE, 0.84 vs mean
NSE, 0.78).

Outlet calibration strategy. In the headwater calibration
locations and in the calibration period, the NSE and
PBIAS ranged from 0.65 to 0.75 (mean, 0.73) and
�10.72 to 13.72 (abs.mean, 8.46) in the headwater
subbasins (Table IV). In the validation period, the NSE
and PBIAS ranged from 0.62 to 0.86 (mean, 0.73) and
�15.24 to 25.94 (abs.mean, 15.14) (Table IV). In the
validation locations and in the calibration period, the NSE
and PBIAS ranged from 0.64 to 0.78 (mean, 0.72) and
4.14 to 15.26 (abs.mean, 9.84). In the validation period,
the NSE ranged from 0.76 to 0.85 (mean, 0.80) and
PBIAS ranged from �4.25 to 14.98 (abs.mean, 7.96)
(Table V). The quantitative statistics showed that the
outlet calibration strategy rated as good based on NSE
criteria and very good based on PBIAS criteria in the
various locations of the watershed when it was calibrated
at the outlet and verified across various locations in the
watershed.
Comparing the two strategies showed that the spatial

calibration strategy statistics slightly outperforms the
Figure 6. Time series plots at R4-H location using a) spat

Copyright © 2015 John Wiley & Sons, Ltd.
outlet calibration statistics in all locations within the basin
(based on NSE and PBIAS statistics). It should also be
noted that the statistics at the outlet (O-V2) were better for
the spatial calibration during calibration and validation
periods mainly because the spatial variations within the
basin were more realistically captured. However, the
outlet calibration strategy still performed well for this
watershed. This could be the result of the basin being very
homogeneous with a flat topology and agriculture being
the most prominent landuse. In addition, the tile drains
which are major intra-watershed processes in the basin are
represented in the model. Outlet calibration may perform
even less well than the spatial calibration strategy for
watersheds that have greater variation in topology and
land use.
A time series plot (Figure 6) between observed and

predicted flow using outlet calibration strategy and spatial
calibration strategy at R4-H location showed that the
spatial calibration strategy better represented the peaks
and recession of the hydrographs. The outlet calibration
strategy was either under or over predicting the peaks and
recession. This again showed that using quantitative
statistics alone may be misleading and unreliable. The use
of graphical comparisons along with quantitative statistics
resulted in better evaluation criteria. The results of this
study showed that the spatial calibration strategy gave
greater confidence in modeling efforts.

Effects of transfering parameters across scale

Spatial scale transfer. The monthly NSE values for
NHDPlus model at OV2 and R4-H locations were 0.71
and 0.71, while the PBIAS values were 25.25 and 23.95,
respectively (Table VI). Quantitative statistics showed
that the NHDPlus model was good in the selected
locations based on NSE criteria and satisfactory based on
PBIAS criteria. Similar statistics were seen in other
locations within the basin. Average annual hydrologic
components of the water balance were evaluated in the
NHDPlus model by comparing contributions of surface
runoff and tile flow. Contribution of surface runoff was
29%, while the contribution of tile flow was 54%, which
indicated that the intra-watershed processes (tile drainage)
ial calibration strategy and b) outlet calibration strategy

Hydrol. Process. 29, 5307–5320 (2015)



Table VI. NSE and PBIAS values on daily, monthly and yearly at
two locations (O-V2 and R4-H) for NHDPlus and HUC12 models

Spatial scale Location Temporal scale NSE PBIAS

NHD Plus O-V2 Daily �0.02 25.31
Monthly 0.71 25.25
Yearly 0.01 25.31

R4-H Daily 0.16 23.99
Monthly 0.71 23.95
Yearly 0.28 23.99

HUC-12 O-V2 Daily 0.70 10.59
Monthly 0.82 10.53
Yearly 0.80 10.60

R4-H Daily 0.67 �4.58
Monthly 0.82 �4.60
Yearly 0.87 �4.58
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were captured reasonably well with spatial transfer of
parameters. The time series graphs at both locations
showed that there were some differences in timing and
magnitude of peak flows (simulated data was under
Figure 7. Monthly time series for NHDPlus

Figure 8. Daily time series plot for HUC-1

Copyright © 2015 John Wiley & Sons, Ltd.
predicting most of the time); however, the NHDPlus
model captured the pattern reasonably well (Figure 7).
The differences are likely because of the very small (36%
smaller) subwatershed size and irregular shape in
NHDPlus model compared to the HUC-12 model (Figure
2). In smaller sized and irregular shaped subwatersheds,
the length of the reach and time of concentration are
small. This would result in faster transport of flow and
associated constituents within a day or sometimes within
hours after a rainfall event. The resulting daily
hydrograph will have higher peaks and a very quick
receding curve and thereby under or early prediction at
monthly level (Figure 7). In HUC-12 model, the time of
concentration and length of reach are longer resulting in
more days for the flow to transport and the hydrograph
captures peaks and recession reasonably well. Fine-tuning
of the general parameters (e.g. time of concentration) may
be needed for the NHDPlus model, after spatial transfer of
parameters, to accurately capture the timing and magni-
tude of peak flows and the shape of rising and recession
model at (a) R4-H and (b) OV2 locations

2 model at (a) R4-H (b) OV2 locations

Hydrol. Process. 29, 5307–5320 (2015)
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curves and to improve quantitative statistics. Fine tuning
of the parameters and reporting associated results is
beyond the scope of this paper and will be presented
elsewhere (Yen et al. in prep).

Temporal scale transfer. The daily NSE and PBIAS
values for the HUC-12 model at O-V2 location are 0.70,
0.80 and 10.59 and 10.60, respectively (Table VI). At the
R4-H location, the statistics were 0.67, 0.87 and �4.58
and �4.58, respectively. Quantitative statistics showed
that the performance of temporal scale transfer was good
to very good based on NSE criteria and very good based
on PBIAS criteria on daily and monthly time-step when
the original model was calibrated at monthly time-step.
The time series plots show that the simulated data was
under predicting the peaks flows; however, it captured the
timing and the shape of rising and recession curves well
(Figure 8). General parameters, such as time of concen-
tration, can be adjusted to better capture the peaks on daily
time-step. Overall, the performance of temporal scale
transfer was good in the HUC-12 model based on
quantitative statistics and temporal time series plots.
Quantitative statistics were poor for the NHDPlus model
for daily and yearly time-step at both OV2 and R4-H
locations (Table VI). The poor quantitative statistics are
because of poor performance of the NHDPlus model at the
monthly time-step as seen above after the spatial transfer
of parameters from the HUC-12 model. Performance on
daily and yearly time-steps may be improved after fine
tuning the general parameters of the NHDPlus model.
CONCLUSIONS

Coarse resolution (HUC-12) and finer resolution (NHDPlus)
models were developed within WLEB to demonstrate the
significance of considering intra-watershed processes during
model development, compare and contrast two calibration
strategies (spatial calibration vs. outlet calibration) and
evaluate spatial and temporal transfer of parameters.
We found that including intra-watershed processes

(i.e. tile drainage) produced accurate and realistic hydro-
logic simulations. However, failure to include these
processes may still result in a model that performs well
according to model performance statistics. Thus, consider-
ing only model performance statistics may be misleading.
The spatial calibration strategy produced better results in
terms of quantitative statistics and graphical comparisons.
The outlet calibration strategy also produced decent results
in various locations within the watershed. This was likely
because the WLEB is a fairly homogenous watershed.
However, we believe that the spatial calibration strategy
results in greater confidence for modeling efforts that
support science-based decisions. Transferring parameters
Copyright © 2015 John Wiley & Sons, Ltd.
across temporal scales worked well with a similar spatial
resolution model; however, additional fine tuning is
required when transferring parameters across spatial scales
to produce realistic results. This study showed that
quantitative statistics should be used in conjunction with
graphical comparisons and knowledge of the watershed
(e.g. literature sources or expert knowledge) to ensure
that hydrological processes and water balance are within
reasonable limits and will produce better and more
reliable predictions.
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• NHDPlus data were conducted for flow
and water quality in Western Lake Erie
Basin.

• Practicable conservation scenarios were
implemented to NHDPlus watershed
project.

• Projected cost among different conserva-
tion scenarios was compared and investi-
gated.

• Model responses by spring/summer sea-
sons were identified by stream order.

• Improved biological conditions were
studied by investment of conservation
practices.
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Complex watershed simulation models are powerful tools that can help scientists and policy-makers address
challenging topics, such as land use management and water security. In the Western Lake Erie Basin (WLEB),
complex hydrological models have been applied at various scales to help describe relationships between land
use and water, nutrient, and sediment dynamics. This manuscript evaluated the capacity of the current Soil
andWater Assessment Tool (SWAT) to predict hydrological andwater quality processes withinWLEB at the fin-
est resolutionwatershedboundary unit (NHDPlus) alongwith the current conditions and conservation scenarios.
The process based SWAT model was capable of the fine-scale computation and complex routing used in this
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project, as indicated by measured data at five gaging stations. The level of detail required for fine-scale spatial
simulation made the use of both hard and soft data necessary in model calibration, alongside other model adap-
tations. Limitations to themodel's predictive capacity were due to a paucity of data in the region at the NHDPlus
scale rather than due to SWAT functionality. Results of treatment scenarios demonstrate variable effects of struc-
tural practices and nutrient management on sediment and nutrient loss dynamics. Targeting treatment to acres
with critical outstanding conservation needs provides the largest return on investment in terms of nutrient loss
reduction per dollar spent, relative to treating acres with lower inherent nutrient loss vulnerabilities. Important-
ly, this research raises considerations about use of models to guide land management decisions at very fine
spatial scales. Decision makers using these results should be aware of data limitations that hinder fine-scale
model interpretation.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

For the past two decades, complex watershed simulation models
such as the Soil and Water Assessment Tool (SWAT; Arnold et al.,
2012), Agricultural Policy/Environmental eXtender (APEX, Williams et
al., 2012), and Hydrological Simulation Program-Fortran (HSPF,
Bicknell et al., 1997) have been implemented for water resources as-
sessment. These and similar advanced technologies enable modelers
to investigate challenges associated with water supply, water quality,
pollutant control, and other ecosystem services (Chou and Wu, 2014;
Jha and Gassman, 2014; Gebremariam et al., 2014). Model outputs are
used to inform land management decision-making and policy develop-
ment at local to national scales (White et al., 2015, in press; Johnson et
al., 2015).

As modeling technologies have been further refined to simulate
more complex systems in finer spatial and temporal resolution, param-
eter inputs required to calibrate themodels have also increased in com-
plexity (Haan et al., 1995; Ajami et al., 2007). Model simulations of
watershed responses to various agricultural management scenarios in
terms of hydrological, sediment, and nutrient processes require a large
number of physically/empirically based functions, but monitoring ef-
forts in agricultural systems that could provide those inputs are limited.
To address the challenges of providing sufficient input data and calibrat-
ing complex models (e.g., SWAT) at a fine spatial scale of resolution, ef-
ficient optimization techniques and uncertainty analysis need to be
applied to ensure that statistically acceptable results are generated af-
fordably and with limited computational time (Duan et al., 1992; Yen
et al., 2014a). Because of the lack of monitored data to calibrate the
model, assumptions are often necessary during fine-scale model devel-
opment. Caveats associated with these assumptions should be given
due consideration when interpreting modeled results.

Although models have traditionally been calibrated with hard data,
it is increasingly necessary to use both hard and soft data to achieve
model calibration. Non-temporalmodel outputs and the associated pre-
dictive uncertainty that can be stated as aggregated indices of water-
shed characteristics are considered soft data (Seibert and McDonnell,
2002). Soft data are typically associatedwith intra-watershed processes,
which have been demonstrated to impact model predictions during
model calibration (Yen et al., 2014b, 2014c). It is possible to generate
model runs that performwell in terms of hard data outputs (model per-
formance can be tentatively categorized by statistical thresholds;
Moriasi et al., 2007), but simultaneously produce unreasonable soft
data outputs (e.g. a simulated annual denitrification rate twice the
rate of measured data in the field; Yen et al., 2014b, 2014c). Soft and
hard data should both be carefully considered to ensure that the cali-
brated model is appropriate for application in further analysis
(Efstratiadis and Koutsoyiannis, 2010).

Trade-offs in the relationship between model resolution and model
performance (accuracy) are of keen interest in the field of water re-
sources analyses, because these models increasingly serve as landman-
agement and policy development decision support tools (Chaubey et al.,
2005). This is particularly true in the Western Lake Erie Basin (WLEB),

where nutrient management strategies and water quality impacts
have been a focus of modeling for decades (Di Toro et al., 1973).
Model calibration strategies have necessarily kept pace with model de-
velopment, enabling enhanced spatial and temporal resolution, so that
model predictions are more relevant to field-scale and local policy
level decision-making processes (Cotter et al., 2003). However, efforts
related to widespread and long-term monitoring of water quality in
WLEB have not kept pace with model development. Robertson and
Saad (2011) noted that the reduction in tributary monitoring efforts in
this region makes evaluation of current nutrient and sediment loadings
difficult. Currentmonitoring data in the Lake Erie drainage basin is inad-
equate to measure impacts of agricultural management on water qual-
ity (Betanzo et al., 2015) and thus insufficient to support the scales at
which models simulating these impacts are currently being applied.
This is one reason that the use of soft data is necessary formodel calibra-
tion and one of the major challenges to model validation.

The SWAT model continues to provide informative analyses at in-
creasingly more refined spatial scales. For example, the National Crop-
land reports published by the Conservation Effects Assessment Project
(CEAP) evaluate the impacts of agricultural management and conserva-
tion practice adoption with the APEX (simulation under field scale
level) and SWAT (combining outputs from APEX and routing among
subwatersheds) models, based on data valid at the 8-digit Hydrologic
Unit Code (HUC-8) scale of resolution for cropland in the contiguous
USA (USDA-NRCS, 2011; Johnson et al., 2015). The CEAP-Cropland re-
ports inform conservation policy decision making, including the Farm
Bill's conservation spending budget. The USEPA (U.S. Environmental
Protection Agency) supported Hydrologic and Water Quality System
(HAWQS) is a user-friendly online system that applies SWAT to perform
scenario analyses in multiple resolution delineation formats, including
the HUC-8, -10, and -12 digit scales (USEPA, 2015; Yen et al., 2016a).

The NHDPlus dataset (National Hydrography Dataset) is the finest
resolution watershed boundary unit dataset currently available for
large-scale modeling applications; the average size of subwatersheds
is 2.6 km2. There is only one large-scalewatershedmodeling implemen-
tation of NHDPlus dataset reported to date. Daggupati et al. (2015) ap-
plied the SWAT model to compare accuracy of simulation of
hydrologic processes between HUC-12 and NHDPlus scales in theWest-
ern Lake Erie Basin (WLEB). Building upon the work performed by
Daggupati et al. (2015), this study uses both hard and soft data (annual
denitrification rate and nitrate (NO3) loads contributed from tile drain-
age system) to develop SWATmodels to describe sediment andnutrient
(total phosphorus and total nitrogen) dynamics at the NHDPlus scale in
WLEB.

In 2002, the Farm Bill passed by the United States Congress included
an 80% increase in allocation of federal funds for agricultural conserva-
tion relative to the funding amount in the previous Farm Bill (Johnson
et al., 2015). CEAP was initiated by the USDA to conduct credible scien-
tific evaluation of the benefits derived from the increased use of federal
financial resources for agricultural conservation (Mausbach and
Dedrick, 2004). Amajor goal of CEAP is to quantify the impact of agricul-
tural conservation practices on water quality (e.g. sediment, nitrogen,
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phosphorus, and pesticide residues). The focused and scientifically
credible outcomes of these analyses can be used to help inform future
conservation practice and program investments, and may serve to
guide conservation research inquiry and investments (White et al.,
2014).

The impetus behind the development of this high resolutionmodel-
ing project was a need expressed by the Conservation Effects Assess-
ment Project (CEAP) - Wildlife Component for a product capable of
accurate predictions of nutrient and sediment dynamics in the many
very small streams systems across WLEB in order to conduct aquatic
stream health analyses. SWAT model outputs developed from simulat-
ing thewatershed at this scale could be used as data inputs in biological
models, such as those used to assess stream health and inform stream
conservation decisions (Keitzer et al., in press). A principal caveat asso-
ciatedwith this work is that while themodelmay be capable of produc-
ing appropriately scaled and reasonable-seeming results, insufficient
quantitative data exist against which to compare the variousmodel out-
puts at this scale in order to determine whether the simulated spatial
specificity is reflective of reality across the entire simulated WLEB.
More monitoring is necessary in order to provide sufficient data for
complete model validation.

This implementation of the SWAT model in a sophisticated water-
shed analysis ofWLEB at the finest available, NHDPlus spatial resolution
enhances bothmodel performance and the predictive capacity associat-
ed with cross-field investigations, enabling better modeling results in
the future. In considering the increasing interests inwater quality issues
inWLEB, this study reports on a unique, novel, and timely application of
the SWATmodel, in which NHDPlus resolution data are used to: (1) ex-
plore soft/hard data applications on NHDPlus scale model development
and subsequent predictions of streamflow, and sediment and nutrient
dynamics associated with agriculture in the WLEB; (2) demonstrate
the utility of modeling at this scale to describe the possible costs and
benefits of various conservation practice adoption scenarios in the
WLEB. The most important reason that the NHDPlus stream network
was adopted in this CEAP-Wildlife study is because the fish community
research associated with potential/current contaminants requires de-
tailed information such as simulated flow, sediment, and nutrients at
the stream reach scale. In addition, the approach conducted in this
study that pairs conservation scenarios with projected additional costs
is particularly rare in literature, since that requires mutual work
among modelers (engineers), biologists, and economists. Spatially ex-
plicit simulations like these provide important information to consider
when managing agricultural lands - knowledge gaps could be exposed
that focused research efforts could help resolve.

2. Materials and methods

2.1. The SWAT model

The SWAT model was used to simulate streamflow and water qual-
ity inWLEB (Fig. 1). SWAT is a process/empirical-based, quasi-distribut-
ed, continuous time-step model developed by the United States
Department of Agriculture – Agricultural Research Service (USDA-
ARS) to perform large-scale watershed simulations based on specified
soil, landuse, weather, and topographic data (Arnold et al., 1993,
2012). Potential impacts of current and changing land management
and conservation practice adoption on ecological goals and concerns
can be evaluated by simulating scenarios and analyzing predicted im-
pacts on hydrologic, sediment, and nutrients processes (Daggupati et
al., 2011; Keitzer et al., 2016; Scavia et al., 2016). SWAT is one of the
most broadly applied large-scale watershed simulation models in the
field of water resource planning and management (Gassman et al.,
2007) and is among the toolsets used to inform conservation practice
policy within the USA (Johnson et al., 2015; Mausbach and Dedrick,
2004).

The publicly available version of SWAT is currently parameterized at
three spatial scales: (1) basin level; (2) subbasin level; and (3) HRU
(Hydrologic Response Unit) level. HRUs are a unique combination of
slope, landuse, and soils; there can bemanyHRUs per subbasinwhereas
parameters for a HRU can be very specialized by user discretion. The
HRU level parameters are specifically assigned to all HRU files so that
the parameter values may be altered by the modeler for selected
HRUs. The subbasin level parameters are assigned uniformly within a
given subbasin, and the basin level parameters are uniformly applied
to the entire basin defined by the SWAT project. It was stated that
SPCON (linear parameter to adjust sediment load in channel sediment
routing (Neitsch et al., 2011)) is one of the most sensitive parameters
involved in sediment and sediment-associated phosphorus calibration
and calculating transportable maximum sediment load (Chu et al.,
2004;White and Chaubey, 2005). However, SPCON is a parameter spec-
ified at the basin level, so it is possible for SWAT simulations to over- or
under-estimate the basin sediment and sediment-associated phospho-
rus loads, especially because most watersheds do not have homoge-
neously distributed topography (Neitsch et al., 2011). To improve
model predictions of sediment and sediment-associated phosphorus
dynamics in this study, a revised version of SWAT, named SWAT-SAS
(Subregional Adjustment of Sediment) was developed, which allows
SWAT users to specify SPCON values for each subbasin within the
basin of interest. These subbasin specific adjustments in the *.rte files
enhance the spatial accuracy of sediment and sediment-associated
phosphorus predictions. More details of SWAT-SAS are described in
Appendix A.

2.2. Soft-data-constrained calibration

Large-scale watershed modeling efforts with sophisticated
streamflow, sediment, and nutrient dynamic simulation processes nec-
essarily require the incorporation of a large number of model parame-
ters, some of which are difficult to populate with currently available
datasets. Various parameter estimation (or, calibration) techniques
have been proposed to solve challenging high-dimensional watershed
calibration problems (Yen et al., 2014a). The parameter estimation pro-
cess (e.g., automatic or manual calibration) is designed to minimize the
error term between the observed and simulated data in a given time se-
ries (e.g., daily streamflow, monthly sediment load). The temporal data
used to calculate error statistics during calibration process can be cate-
gorized as hard data (Seibert and McDonnell, 2002). Modelers can use
manually defined statistical guidelines, such as the General Perfor-
mance Ratings (Table 2), to evaluate the performance of error statistics
(Moriasi et al., 2007). However, it was stated in literature that water-
shed simulation outputs may be inconsistent with real hydrological
mechanisms and/or intra-watershed processes (Yen et al., 2014b).

In addition to hard data in the form of temporal series, soft data are
defined as non-temporal measures of a watershed in reflecting intra-
watershed processes such as denitrification, average annual sediment
loading, or ratio of nitrate attributed from subsurface versus surface
flow (Yen et al., 2016b). Developing calibration routines without due
consideration of soft data may produce excellent model outputs in
terms of error statistics, but the simulations may violate actual water-
shed behavior. For example, in a case study at the Eagle Creek Water-
shed, Indiana, USA, an auto-calibrated SWAT model without
consideration of the region's prevalent tile drainage system might pro-
vide accurate stream flow predictions, but would incorrectly attribute
the majority of flow to surface runoff losses (Yen et al., 2014b). The
presence of the tile drainage system requires themodeler to apply addi-
tional constraints to the model simulation rather than relying on the
auto-calibration system to correctly designate flow to the appropriate
loss pathways (Yen et al., 2014b).

In much of the Midwest region (MWR) of the USA, tile flow path-
ways contribute to significant subsurface flow pathways; if model re-
sults are used to inform conservation practice adoption decisions or
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conservation-related policy, overlooking the significance of this loss
pathway could lead to inappropriate landmanagement decisions. In ad-
dition, the associated predictive uncertainty may also be affected con-
siderably (Yen et al., 2014c). It was indicated that the use of soft data
may have direct impact on both parameter and predictive uncertainty.
Some relevant parameters may not explore the full spectrum of given
ranges because of the incorporation of additional soft-data-constraints
(however, exploration of uncertainty of hard/soft data is not the prima-
ry goal in this study so it will not be fully investigated). In this study,
soft-data-developed constraints were added to the denitrification rate
and amount of nitrate (NO3) contributed from tile flow to help govern
the simulated intra-watershed processes in the region. The denitrifica-
tion rate is constrained to be b50 kg/ha (David et al., 2009) and the
ratio of NO3 contributed by tile flow is constrained to be no less than
two-thirds of total NO3 losses (Schilling, 2002). For auto-calibration
routines in practice, projected (or proposed) candidate parameter sets
are generated by the current best solution evaluated by statistical per-
formance. By the incorporate soft-data-constrained calibration, simulat-
ed results which violate the two constraints are automatically rejected
and will not be considered as the candidate parameter set. In this case,
the finalized calibration results will follow the constrained watershed
behavior automatically. The approach of soft-data-constrained calibra-
tion guarantees that quality of derived model outputs to be representa-
tive to the real world in terms of better reflecting hydrological and
water quality processes. On the other hand, modelers and engineers

can take advantage of this approach to avoid the risk of generating
good modeling results for the wrong reasons.

2.3. Study area description

TheWLEB is located in the Midwestern United States of Ohio (76%),
Indiana (17%) and Michigan (7%), has a drainage area of 23,817 km2,
and is bounded by the Raisin River in the north and the Sandusky
River in the south (Fig. 1). Elevation changes in the WLEB are fairly
mild (elevation varies from246m to387mabove sea level), with an av-
erage slope of around 2%. The mean winter temperature is −5 °C and
temperatures can rise to 29 °C in summer (available from the National
Oceanic and Atmospheric Administration (NOAA) Cooperative Observ-
er network andWeather- Bureau-Army-Navy stations). Average annual
precipitation ranges between 838 and 940 mm. The major land use in
WLEB is cultivated cropland (70%), dominated by corn-soybean rota-
tions; forest (12%) and urban (12%) lands comprise the other dominant
land uses in the region. A significant portion of the agricultural lands in
WLEB, like most agricultural lands across the MWR, are installed with
well-organized tile drainage systems, which enable agricultural activi-
ties (Kaatz, 1955) in a region previously dominated by a wetland
(4000 km2) called the Great Black Swamp (Mitsch and Gosselink,
2007). Although agricultural tile drainage is used in other regions of
the globe, such as Canada and Europe, the extensiveness and level of so-
phistication of theMWR's large-scale agricultural tile drainage system is

Fig. 1. Location of the Western Lake Erie Basin and the representative gauging stations.
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unique. Model simulations of the impacts of various land management
scenarios on conservation concerns in this unconventional watershed
must consider both natural and anthropogenic influences on the mech-
anisms of surface and subsurfaceflow (groundwater, tile drainageflow)
in order to assess the actual watershed behavior.

2.4. Model setup/incorporation using NHDPlus data

Two SWATmodelswith different spatial resolutionswere developed
for the WLEB region: (1) a HUC-12 scale model; and (2) an NHDPlus
scale model, at the 30-meter Digital Elevation Model (DEM) for topo-
graphical features (Fig. 2). The HUC-12 model was built on the Water-
shed Boundary Dataset (WBD) (1:24,000 scale-level) with 391
subbasins, which is available online (http://datagateway.nrcs.usda.
gov). The sizes of subbasins in the HUC-12 model ranged from 25 to
191 km2 (average: 72 km2). The WBD dataset is conjointly synchro-
nized by the United States Geological Survey (USGS), United States De-
partment of Agriculture – Natural Resources Conservation Service
(USDA-NRCS), and the United States Environmental Protection Agency
(USEPA). TheNHDPlus dataset is coordinated byUSGS andUSEPA; asso-
ciated data (at 1:100,000 scale-level) is available online (http://www.
horizon-systems.com/NHDPlus/index.php). The NHDPlus model in-
cludes 11,128 subbasins, which range in size from 0.001 to 80 km2 (av-
erage: 2.6 km2). Daily streamflow calibrations in the NHDPlus version
were developed by Daggupati et al. (2015).

SWATmodels were set up using the Geographic Information System
(GIS) interface of ArcSWAT2012 (rev593) (supported by ArcGIS10.1).
Since it is time-consuming to execute a SWAT project in NHDPlus reso-
lution (e.g. 10 h to complete a single 13-year SWAT run using an Intel ®
Core™ i5-2500 k CPU @ 3.30 GHz, 64-bit operating system, Microsoft
Windows 7 Professional), a HUC-12 resolution SWAT model of WLEB
was built and calibrated for streamflow (each iteration consumes b2 h
for the same running period inNHDPlus). The calibrated streamflowpa-
rameterswere then transferred from theHUC-12 designedmodel to the
NHDPlus project. Details can also be found in Daggupati et al. (2015).

Soils data were acquired from the publicly available USDA-NRCS
State Soil Geographic database for the Conterminous United States
(STATSGO at 1:250,000 scale-level) (USDA-NRCS, 1995). The simulated
land uses were derived from the 30-meter resolution Crop Data Layers
(CDLs), which include major rotations of local crops (Srinivasan et al.,

2010). The slope information is incorporated with the soil and landuse
data by HRU, where three slope categories (0–2%, 2–5%, and N5%)
were defined, with the threshold area of 50 ha for each. In addition,
row-crop agriculture was represented in HRUs without implementing
pre-defined thresholds. The total number of HRUs for the HUC-12 and
the NHDPlus models was 13,156 and 34,807, respectively.

Management practice data for agricultural activities were obtained
from multiple sources. Cropland tillage practices were available from
USGS survey data (Baker, 2011). Operation schedules designed for the
RUSLE2.0 erosion model were acquired from USDA-ARS (Foster,
2005). Fertilization rates were obtained from National Agricultural Sta-
tistics Service (NASS) reports (USDA-NASS, 2014) of average crop yield
at the county level. The assembled data were organized in the format of
SWAT management files by a software package in VB.net (code avail-
able upon request). The management operations for agricultural activi-
ties (e.g., harvest/kill operations) were defined by date, and heat units
were applied to those without data. In SWAT operation, historical pre-
cipitation was used for the years being simulated (e.g., from 1990 to
1999). On the other hand, it is very difficult to obtain the corresponding
management details in each and every year in practice. Therefore, the
projected operation schedule was implemented to reflect the manage-
ment operation during simulation. Since spatial data on tile drainage
systems are not publicly available, it is not feasible to allocate tiles spe-
cifically to currently drained field sites. Therefore, to accommodate for
the impacts of tile drainage, the existence of tile drainage was assumed
on all agricultural soils with b1% slope and soils categorized as poorly
drained per the Soil Survey Geographic database (http://www.nrcs.
usda.gov/wps/portal/nrcs/detailfull/soils/home). The HUC-12 and the
NHDPlus SWAT models use the same temperature and precipitation
data (from 1960 to 2010) inputs, available from the Weather Bureau
Army Navy (WBAN) and Cooperative Observer Network Stations col-
lected by National Oceanic and Atmosphere Administration (NOAA).

Available measured streamflow, sediment, and water quality record
data were used to conduct model calibration (1990–1999) and valida-
tion (2000–2006) (Table 1). More details on streamflow calibration in
the NHDPlus scale model can be found in Daggupati et al. (2015).
Daily loads for total nitrogen, total phosphorus, and total suspended
solids data used in calibration and validation of nutrient and sediment
processes were estimated from measured USGS values with the
Fluxmaster load estimation program (Schwarz et al., 2006; Robertson

Fig. 2. The HUC-12 and the NHDPlus models in WLEB (Daggupati et al., 2015).
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and Saad, 2011) (Table 1). The LOAD ESTimator (LOADEST) program
(Runkel et al., 2004) was used to estimate daily loads for soluble phos-
phorus and NO3 based on measurements of grab samples taken at the
gauging stations (Table 1).

2.5. Model calibration/validation

SWAT has been applied in WLEB at coarser scales than the analyses
presented here, including 350 subbasins and 4416HRUs in total; (Bosch
et al., 2011, 2013) and 4-digit HUCs (USDA-NRCS, 2011). In this study
SWAT simulated 391 subbasins and 13,156 HRUs at HUC-12 scale;
11,128 subbasins and 34,807 HRUs at NHDPlus scale.

The potential impacts of nitrogen, phosphorus, and sediment load-
ings on aquatic species can be evaluated through standardized indices
such as IBI (Index of Biotic Integrity) and dissolved oxygen in a given
water body. Excess nitrogen and phosphorous concentrations in fresh-
water can pose a serious threat to freshwater biodiversity and many
of the valuable ecosystem services provided by freshwater ecosystems
(Carpenter et al., 1998; Smith et al., 1999). For instance, nutrient loading
from WLEB watersheds has contributed to eutrophication of Lake Erie
and threatens commercial and recreational fisheries, tourism, and the
supply of safe drinking water (Michalak et al., 2013; Kane et al., 2014).
In the United States, nutrient enrichment is a major contributor to de-
graded stream conditions (USEPA, 2006). Water quality (drinkability,
fishability, swimability, etc.) issues inWLEB continue to concernmunic-
ipalities and the general public. In 2014, potentially 500,000water users
faced a drinking water crisis in and around Toledo, Ohio, USA related to
an algal bloom, a symptom of eutrophication (Dungjen and Patch,
2014). This study provides scientific reference to nitrogen, phosphorus,
and sediment dynamics, which play a role in the development of harm-
ful algal blooms (HABs) and toxicity of the blooms. Although the drivers
of HABs and their toxicity are poorly understood, they are clearly an
emerging threat to freshwater systems (Brooks et al., 2016.). This report
and the SWAT model development associated with it may help inform
land management and policy decisions to help reduce the likelihood
and/or frequency of recurrences of similar emergency situations.

Asmentioned earlier, SWAT streamflowcalibration and validation in
WLEBwas conducted in previous work (Daggupati et al., 2015).Weath-
er data used for the calibration period for the nutrients and sediment
dynamics was from 1990 to 1999, with a three-year additional simula-
tion warm-up period (1987 to 1989); the validation was conducted on
2000 to 2006 data. Since the NHDPlus project was computationally de-
manding, the sediment and nutrients calibration ofWLEB was conduct-
ed manually by expert judgement.

To evaluate the model performance under the developed calibra-
tions, two quantitative error statistics were used: the Nash-Sutcliffe Ef-
ficiency Coefficient (NSE) and the Percent Bias (PBIAS). The NSE (Nash
and Sutcliffe, 1970) has been implemented in a wide variety of water-
shed modeling topics (Servat and Dezetter, 1991; ASCE, 1993) and has
proven effective at predicting reasonable temporal outputs, especially
on seasonal peaks (Santhi et al., 2001). The PBIAS statistical measure,

on the other hand, performs better at capturing trends in consistentwa-
tershed responses, such as average flow rate, which is important in
maintaining stabilized fish populations (USDA-NRCS, 2014). The poten-
tial magnitudes of NSE range from −∞ to 1. Perfect matches between
model predictions and observation data are indicated when NSE equals
one. On the other hand, the best PBIAS value is 0%; underestimation is
apparent when PBIAS N0%, and overestimation is signified by PBIAS
b0%. General performance ratings of NSE and PBIAS values follow the
convention developed by Moriasi et al. (2007) (Table 2).

2.6. Conservation scenarios

The CEAP-Croplands report on the Great Lakes region reports on
conservation practices and agricultural practices in use from 2003 to
06 (USDA-NRCS, 2011). The report classifies all cropland acres into
“needs classes” based on inherent vulnerabilities to leaching and or run-
off and levels of conservation treatment. In addition to analyses of “cur-
rent conditions” simulations and their impacts on conservation
concerns, the CEAP-Croplands National reports contain analyses on
modeled hypothetical conservation scenarios that estimate potential
impacts of various conservation strategies associated with prioritizing
treatment of acres according to “needs classes” (USDA-NRCS, 2011).
Simulation models were used to estimate potential benefits and costs
associated with applying prescribed conservation practices to any or
all of the classes of acres. Per the CEAP-Croplands classification conven-
tions, “Critical Needs” acres have a high need for additional conservation
treatment; these acres include the most vulnerable of under-treated
acres, those with the fewest conservation practices in place, where the
highest losses of sediment and/or nutrients can be expected if no further
conservation actions are taken. “Moderate Needs” acres have an inter-
mediate need for additional conservation treatment; these acres are
under-treated, but have lower inherent levels of vulnerability to losses
or have some effective conservation practices in place. “Low Needs”
acres have low inherent vulnerabilities to losses, or are adequately
treated to address those vulnerabilities; these acres may still suffer an-
nual nutrient and sediment losses that could be lessenedwith addition-
al treatment. Further, current treatment levels on LowNeeds acresmust
be maintained in order to ensure low nutrient and sediment losses in
the future.

One of the objectives is to demonstrate the potential outcomes of
watershed modeling at NHDPlus resolution by incorporating possible
costs via different scenarios of conservation practices. Therefore, set-
tings of parameters in each scenario are the same in order to conduct
less biased comparisons. The major differences in each scenario are
the level of nutrient reduction by alternated conservation practices ap-
plied (e.g., erosion control, nutrient management) and resultant im-
pacts on losses of nutrients and sediment from farm fields. The
scenarios were selected based on scenarios that CEAP-Croplands had
applied in previous reports (USDA-NRCS, 2014, 2015, 2016). Using
these scenarios broadens the potential implications of the conducted
analyses, as it allows for future comparison across regions that were

Table 1
General information of calibration/validation data sources.

Station ID HUC-8 number Drainage area
(km2)

Location Data source (streamflow) Data source (nutrients)

4176500 04100002
(Raisin)

2680 (11.3%) River Raisin near Monroe,
MI

Heidelberg College River Studies Heidelberg University & USGS

4178000 04100003 (St.
Joseph)

1541 (6.5%) St. Joseph River near
Newville, IN

United States Geologic Survey USGS

LES040-0007 04100004 (St.
Marys)

1311 (5.5%) St. Marys River Indiana Department of Environmental
Management

Indiana Department of Environmental Management

4193500 04100009
(Maumee)

16,270 (68.3%) Maumee River at
Waterville, OH

Heidelberg College River Studies Heidelberg University, USGS & OH Environmental
Protection Agency

4198000 04100011
(Sandusky)

2015 (8.5%) Sandusky River near
Fremont, OH

Heidelberg College River Studies Heidelberg University, USGS & OH Environmental
Protection Agency

The selected representative gauge stations are used in calibration/validation processes where details of the selection procedure can be found in Daggupati et al. (2015).
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similarly simulated in CEAP-Croplands reports. In this study, eight sim-
ulations were performed with the SWAT model developed for these
analyses. The calibrated SWATmodel represents the Baseline condition
(BL) and serves as the basis fromwhich the other scenarios were devel-
oped. The conditions observed in the BL scenario are the result of exten-
sive conservation practices already in use in the region. Every cultivated
cropland acre in the WLEB region was treated with an average of 1.8
conservation practices in 2003–06 and 2.4 conservation practices in
2012. Conservation practices in place in WLEB in 2003–06 represented
a $208million annual investment ($43.39 per acre), whereas conserva-
tion practices in place in 2012 represented a $277million annual invest-
ment ($56.98 per acre; USDA-NRCS, 2016). The data on practices and
management used to develop the BL were primarily from the time peri-
od between 2003–06 and 2012.

Conservation treatment types were classified into two groups: ero-
sion control practices alone or erosion control practices in conjunction
with nutrient management practices. Simulation of six treatment sce-
narios explores the potential impacts of treating acres in particular
needs classes with one or both treatment practices at the watershed
scale. Acres in each of the three needs classes defined in the CEAP-Crop-
lands report on the Great Lakes (NRCS-2011) were treated with either
structural practices or both structural and nutrient management prac-
tices (Table 3).

An additional Grass Background (GBG) scenario was simulated to
provide context for the predicted impacts of “current” agriculturalman-
agement. The GBG scenario provides an estimate of sediment and nutri-
ent losses in the absence of agriculture (replaced by grass cover). The
eight simulated scenarios were analyzed to provide estimations of

annual financial costs and conservation impacts of various watershed-
scale conservation strategies (Table 3 and Fig. 4).

The primary conservation practice cost data sourcewas the 2010 of-
ficial state USDA-NRCS Payment Schedule database, augmented with
cropland rental rates, commodity prices, and fertilizer prices from
other published sources (USDA-NRCS, 2012). The NRCS National Con-
servation Plans (NCP) database was used to estimate the average num-
ber of units of practice per protected acre by state and practice. Rates
from the NRCS Technical Service Provider database were used as a
proxy for Technical Assistance (TA) costs. Since a farm field may have
a variety of practices applied, each with a different useful life span, a
special Equivalent Net Annual Value formula was used to amortize the
cost of each practice, sum the costs across practices for each sample
point, and calculate the annualized cost per acre of the treatment alter-
native (Boardman et al., 2001). The costs used here include the full cost
of planning, installation,maintenance, and forgone income on land con-
verted to conservation cover, regardless of whether some or all of the
cost would be partially reimbursed to the farmer or incurred by a non-
farm entity such as a federal agency. State average cropland rental
rates were used as the cost of land converted from active crop produc-
tion to a conserving use such as filter strips or buffers (USDA-NASS,
2011). All conservation practice costs were converted to units of prac-
tice per protected acre, using data from the NCP database. For example,
the NCP datamay show that on average 1.6 acres of buffer strip are used
per 40 acres of cropland field, for a ratio of 0.04 acres of buffer practice
per acre of protected cropland. If the buffer strip annualized cost per
acre of buffer was $100, then for this example, the modeled cost
would be $4 per protected acre ($100 ∗ 0.04).

Table 2
General performance ratings.
Moriasi et al. (2007).

Categories of general performance rating NSE PBIAS (%)

Streamflow Sediment & nutrients

Very good 0.75 b NSE ≤ 1.00 PBIAS b ±10 PBIAS b ±25
Good 0.65 b NSE ≤ 0.75 ±10 ≤ PBIAS b ±15 ±25 ≤ PBIAS b ±40
Satisfactory 0.50 b NSE ≤ 0.65 ±15 ≤ PBIAS b ±25 ±40 ≤ PBIAS b ±70
Unsatisfactory NSE ≤ 0.50 PBIAS ≥ ±25 PBIAS ≥ ±70

NSE: Nash-Sutcliffe efficiency coefficient.
PBIAS: Percent bias.

Table 3
Definitions of CEAP scenarios and the corresponding cost.
USDA-NRCS (2015, 2016).

Conservation practices Content Projected additional cost $ (USD) Treatment needs level

High Moderate Low

Baseline BL 162,500,000† – – –
Erosion control - critical ECC 4,504,349 EC – –
Erosion control - all needed ECA 55,782,326 EC EC –
Full treatment erosion control FT 128,262,006 EC EC EC
Nutrient management - critical NMC 8,394,761 EC + NM – –
Nutrient management - all needed NMA 149,253,423 EC + NM EC + NM –
Full nutrient management NM 263,393,414 EC + NM EC + NM EC + NM
Grass background GBG – – – –

BL: The default scenario that incorporates current watershed information and the associatedmanagement practices in the field. The baseline scenario will be calibrated before conducting
the following assessment in varying scenarios.
ECC: The ECC scenario includes region in the watershed with high treatment need for the target of erosion control.
ECA: The ECA scenario includes region in the watershed with high and moderate treatment need for the target of erosion control.
FT: The FT scenario includes region in the watershed with high, moderate, and low treatment need for the target of erosion control.
NMC: The NMC scenario includes region in the watershed with high treatment need for the target of erosion control and nutrient management.
NMA: The NMA scenario includes region in the watershed with high and moderate treatment need for the target of erosion control and nutrient management.
NM: The NM scenario includes region in the watershed with high, moderate, and low treatment need for the target of erosion control and nutrient management.
GBG: The GBG scenario represents the assumption that all available croplands are forced to apply grassland practice with no exception. In this case, the expected cost could be the highest
of all scenarios.

† Per-acre cost data for individual conservation practices were available for the 2010 crop year. The following four sources were used to compile baseline conservation cost estimates: 1.
The NRCS payment schedule, 2. The NRCS conservation plans database, 3. The Technical Service Provider rate database, and 4. Average cropland rental rates.
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2.7. Potential biological applications

The potential for conservation practices to improve streambiological
conditions was explored by quantifying the amount of streams poten-
tially degraded by excess nutrients in each conservation scenario. Ex-
cess nutrients are a pervasive threat to stream biodiversity (Richter et
al., 1997; Dudgeon et al., 2006; Vörösmarty et al., 2010). For example,
recent surveys suggest that excess nutrients are potentially degrading
stream biological conditions in N40% of the rivers and streams in the
United States (United States EPA, 2016). For the purposes of this
study, a stream segment was classified as degraded if average annual
total nitrogen (TN) or total phosphorus (TP) concentrations were
above established nutrient criteria shown to increase primary produc-
tion excessively and alter stream algae, aquatic insect, and fish commu-
nities (Evans-White et al., 2014). A stream segment's average
concentration was calculated as the mean of median annual concentra-
tions from the 21-year simulation for each conservation scenario. Out-
comes for each conservation scenario were compared to the baseline
scenario to assess the benefits provided by that scenario.

A number of nutrient criteria have been developed to assess stream
health and while there is some agreement in the general magnitude of
threshold values, the actual thresholds can vary by N6-fold (Evans-
White et al., 2014). Nutrient criteria are particularly influenced by the
statistical method (e.g., percentile approaches, 2DKS, regression tree),
location (e.g., ecoregion), and biological response (e.g., algae, aquatic in-
sects, or fish) used in their development (Evans-White et al., 2014). To
account for this variability explicitly, 43 different nutrient criteria from
a recent review of stream nutrient criteria in the United States (Table
4 in Evans-White et al., 2014) were used to assess potential streamdeg-
radation. These nutrient criteria included thresholds for both TN and TP
based on empirical observations and were developed using a variety of
statistical methods and biological responses (Evans-White et al., 2014).

A linearmixedmodelwas used to assess the return on investment of
different conservation practice types (erosion control only vs. erosion
control and nutrient management). This model included the different
nutrient criteria as random intercepts, and the additional cost of a con-
servation scenario, practice types included in a conservation scenario,
and their interaction as fixed effects. The model used was:

yi ¼ α j ið Þ þ β1Xi1 þ β2Xi2 þ β3Xi3 þ ϵi

α j � N μα;σ
2
α

� �

where in the first level of the model yi is the percent of the watershed
improved in conservation scenario i using nutrient criteria j as a func-
tion of practice types included X1, the amount of additional investment
X2, and their interaction X3. In the second level of the model, nutrient
criterion αj was normally distributed with a mean of μα and residual
variance of σ2

α across all nutrient criteria. The effects of cost, practice
types included, and their interactions were considered significant if
the bootstrapped 95% confidence intervals of the estimates did not in-
clude zero (replicates = 10,000). All models were fit using the lme4
package (Bates et al., 2014) in the R statistical environment (R Core
Team, 2008).

3. Results and discussion

3.1. Results of calibration/validation

As it was stated previously that watershed simulation of the
NHDPlus project is an extremely time-consuming task. Therefore, a
HUC-12 model was initiated and calibrated for streamflow in advance
of the development of the NHDPlus scale model (Daggupati et al.,
2015). One of the most important conclusions was made by Daggupati
et al. (2015) was that some subbasins are similar to other adjacent
ones in terms of geographical differences and also modeling behavior.

Therefore, a total of five major subregions were categorized to conduct
the following computationally expensive NHDPlus project. Five repre-
sentative gauge stations (Daggupati et al., 2015) selected for watershed
calibration and validation are shown in Fig. 1 and Table 4. According to
the General Performance Ratings (Table 2), the daily streamflow cali-
bration and validation can be considered between “Satisfactory” and
“Good” (calibration: NSE: 0.54–0.87; PBIAS (%):−11.76–22.70; valida-
tion: NSE: 0.43–0.88; PBIAS (%):−26.07–25.25). In general, higher sta-
tistical standards are expected for streamflow calibration since flow is
the fundamental medium of hydrologic, sediment, and nutrient pro-
cesses in watersheds. However, streamflow calibration could be com-
pensated for by sediment and nutrient mechanisms, especially in the
NHDPlus resolution. It is extremely difficult to achieve “Very Good” sim-
ulation of streamflow processeswhile concurrently calibrating for other
output variables to be within appropriate ranges in terms of statistical
performance.

Statistical metrics for monthly sediment calibration and validation
ranged from “Good” to “Very Good” (calibration: PBIAS (%): −10.43–
18.63); validation: PBIAS (%): −35.01–35.46) It is important to have
sediment processes well-calibrated because of the interaction between
sediment and total phosphorus dynamics, due to sediment-associated
phosphorus. Results for monthly total phosphorus calibration and vali-
dation were “Very Good” (calibration: PBIAS (%):−12.78–8.42; valida-
tion: PBIAS (%): 0.61 to −22.74). Model predictions for monthly total
nitrogen ranged from “Satisfactory” (validation at St. Joseph) to “Very
Good” (all other stations).

Model performance varied between individual gauging stations. The
model provided better performance for theMaumee River gauge (“Very
Good” results in all output variables) compared to the other stations
(temporal results of streamflow, sediment, and nutrients are shown in
Fig. 3). Among the five selected gauge stations, the Maumee River Sta-
tion is the most representative outlet, since it receives 68.3% of the
whole drainage area. In addition to hard data calibration, soft data
used in these analyses, can have substantial impact on model predic-
tions (Seibert and McDonnell, 2002; Yen et al., 2014b). The biological
analyses in this study required simulation results which mimic realistic
watershed responses. To simulate actual watershed behavior correctly,
denitrification rate (DENI) and NO3 contributed from tile flow
(SSQ_Ratio) were constrained within certain ranges (DENI ≤ 50 kg/ha;
SSQ_Ratio ≥ 0.6). The calibrated SWAT model had a DENI of 23.31 kg/
ha and SSQ_Ratio of 0.72 (72% of NO3 attributed to subsurface flow
pathways) and both soft data outputs were reasonable (in quantity
and in ratio) according to the available literature (Schilling, 2002;
David et al., 2009).

As mentioned previously, the NHDPlus SWAT simulation ofWLEB is
exceptionally computationally expensive. It is not feasible to conduct
thousands of model simulations during parameter estimation. Instead,
expert judgement was used, especially for sediment and nutrient cali-
bration. Therefore, necessary compensation (trade-off) has been made
during the calibration process.

3.2. Applications of conservation scenarios

The conservation strategies simulatedhere explore potential conser-
vation gains and associated financial costs that may be expected from
the application of various suites of practices to various acres (Fig. 4,
Table 3). The application of structural practices that provide erosion
control without complementary nutrient management practices (ECC,
ECA, and FT; Table 3) is much less expensive than is inclusion of struc-
tural practices and nutrient management. Application of structural
practices on Critical Needs, All Needed, or all cropland acres, (ECC,
ECA, and FT scenarios) could be implemented at 54, 37, and 49% of the
respective costs required to supplement structural practices with nutri-
ent management practices on these same acres (NMC, NMA, and NM,
respectively).
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The NM scenario suggests adoption of erosion control and nutrient
management on all cropland acres could reduce annual loads of sedi-
ment being lost from croplands by up to 45%, total nitrogen by up to
41%, nitrate nitrogen by up to 32%, total phosphorus by up to 54%, and
dissolved phosphorus by up to 28% (Fig. 4), but adoption of NM does
not alleviate all of the sediment, nitrogen, or phosphorus conservation
concerns in all of the streams. Even simulated elimination of agriculture
from the landscape and simulated conversion all agricultural lands to
vegetated easements (GBG scenario) did not reduce any nutrient or
sediment losses by N80%, suggesting that other land uses currently

contribute to sediment and nutrient loads (Fig. 4). Restoring stream
health across the region will likely require efforts from all stakeholders
and not just the agricultural community.

Maintaining current conservation and applying nutrient and struc-
tural erosion treatment to all agricultural acres in WLEB would cost
around half a billion dollars every year. These funds are not currently
available; therefore, the idea of prioritizing conservation spending by
targeting Critical Needs acres for treatment before all other acres has
been posited. However, an important and interesting finding of this
work is that treating acres classified as Low Needs provides substantial

Table 4
Statistics of the calibration (1990–1999) and validation (2000–2006) periods.

Station Streamflow Sediment TP TN

NSE PBIAS (%) PBIAS (%) PBIAS (%) PBIAS (%)

Raisin 0.70a/0.43b −11.76/−26.07 16.71/35.46 −3.55/−22.74 14.66/3.59
St. Joseph 0.73/0.74 22.70/18.66 −10.43/−20.3 5.33/4.95 −25.39/−68.71
St. Marys 0.54/0.43 17.94/25.25 17.99/19.57 6.52/9.42 8.23/21.00
Maumee 0.87/0.88 18.03/13.56 10.07/−10.59 8.42/3.42 16.87/13.27
Sandusky 0.82/0.75 18.67/7.00 18.63/−35.01 −12.78/0.61 −15.26/−12.37

a Quantitative measures on the left-hand side represent the statistics for the calibration period.
b Quantitative measures on the right-hand side represent the statistics for the validation period.

Fig. 3.Calibration and validation results of temporal processes ofMaumee Station: (A) streamflow; (B) sediment; (C) total phosphorus; and (D) total nitrogen (OBS: observation data; SIM:
simulation output; -C: calibration period; -V: validation period).
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benefits in almost all cases, relative to treating only Critical Needs or
Critical andModerate Needs acres. These simulations suggest that an ef-
fective conservation strategy for cropland acres inWLEB should consid-
er implementation of improved conservation practices on all cropland
acres in the region, including those that have a low inherent vulnerabil-
ity to losses and those that are already well treated.

It should be noted that the conservation scenarios explored here
were developed to reduce edge-of-field losses, not to meet the needs
of the streams or the ultimate receiving water body, Lake Erie. Further,
these scenarios were not developed to represent themost cost effective
policies to reduce nutrient and sediment loads to the streams or to Lake
Erie. Land managers and communities must identify their conservation
goals and develop comprehensive plans to achieve those goals; these
plans will likely include both on-field and off-field conservation
practices.

As expected, targeting treatment to critical needs acres provides the
largest conservation return per dollar investment. Critical Needs acres
can be treated with erosion control (ECC) at 4% of the investment re-
quired to treat all acres with erosion control (FT) and provides 13% of
FT's annual sediment conservation benefits. All Needed acres can be

treated with erosion control (ECA) at 43% of the cost of FT and will pro-
vide 56% of FT's annual sediment loads reduction benefits. Therefore, al-
though low needs acres have the potential to provide nearly half of all
possible sediment reduction benefits, there is a higher cost per unit of
sediment reduction benefit on these acres than on Critical Needs and
Moderate Needs acres.

Estimations of the annual reductions in sediment loads lost from ag-
ricultural acres in WLEB under alternative scenarios are shown in Fig.
4(A). As would be expected, structural erosion control practices have a
significant impact on reduction of sediment loads. Increasing treatment
to include nutrient management practices drastically increases the cost
of treatment, but provides no benefit to sediment loss reductions (Table
3, Fig. 4). For example, all acres can be treatedwith erosion control prac-
tices (FT) at 49% of the cost of treating all acres with erosion control and
nutrient management (NM), but both options reduce sediment loads
being lost from agricultural acres by 45%, relative to baseline conditions.

Estimations of the annual reductions in total nitrogen loads being
lost from agricultural acres in WLEB under alternative scenarios are
shown in Fig. 4(B). Inclusion of nutrient management with structural
erosion control practices had a much greater impact on total nitrogen

Fig. 3 (continued).
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loss reduction than did structural practice adoption alone. The simulat-
ed benefits of enhanced nutrient management practices on annual ni-
trate reductions are dramatic, likely due to the fact that erosion
control practices only address overland flow losses and nitrate may be
lost to subsurface flow pathways (Fig. 4D). The application of structural
practices to control erosion (ECC, ECA, and FT) achieves only 56, 51,
and 59% of the potential annual total nitrogen load reduction benefits
achieved in scenarios that apply structural practices and nutrient
management practices (NMC, NMA, and NM) on Critical Needs, All
Needed, or all cropland acres, respectively (Fig. 4B). However, ECC,
ECA, and FT provide only 15, 5, and 4% of the nitrate load reduction
benefits achieved in the NMC, NMA, and NM scenarios, respectively
(Fig. 4D). Treating all acres with erosion control practices (FT;
$128.3 million, annually) provides over three times the annual bene-
fits in total nitrogen load reduction, but provides only 19% of the

nitrate loss benefits relative to gains made with adoption of erosion
control and nutrient management on Critical Needs acres only
(NMC; $8.4 million, annually). Thus, nutrient management is clearly
necessary if nitrate load reductions are the principal conservation
goal. Investment decisions should carefully consider the resource con-
cern of interest, as different management strategies are required to
meet various conservation goals.

Estimations of the annual reductions in total phosphorus loads being
lost from agricultural acres under alternative scenarios are shown in Fig.
4(C). Phosphorus, unlike nitrogen, is commonly bound to sediment.
Therefore, erosion control practices tend to have more impact on total
phosphorus losses than on total nitrogen losses. However, application
of nutrient management in conjunction with structural erosion control
practices has a much greater impact on total phosphorus loss reduction
than does structural practice adoption alone. This effect is markedly

Fig. 4. Demonstration of percentage reduction of targeted output responses with alternative conservation scenarios in terms of projected additional cost ($ million, USD): (A) sediment;
(B) total nitrogen; (C) total phosphorus; (D) NO3; and (E) dissolved phosphorus (ECC: Erosion Control – Critical; ECA: Erosion Control – All Needed; FT: Full Treatment Erosion; NMC:
Nutrient Management – Critical; NMA: Nutrient Management – All Needed; NM: Full Nutrient Management; GBG: Grass Background).
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more dramatic when impacts on annual dissolved phosphorus load re-
ductions are considered, likely due to the fact that erosion control prac-
tices only address overland flow losses, whereas dissolved phosphorus
may also be lost to subsurface flow pathways (Fig. 4E).

The application of structural practices to control erosion (ECC,
ECA, and FT) achieves 93, 83, and 84% of the annual total phosphorus
load reduction benefits achieved in scenarios that apply structural
practices in conjunction with nutrient management practices
(NMC, NMA, and NM), respectively (Fig. 4C). However, ECC, ECA,
and FT provide only 62, 23, and 22% of the potential dissolved

phosphorus load reduction benefits that could be achieved with in-
clusion of nutrient management alongside erosion control (in NMC,
NMA, and NM, respectively (Fig. 4E)). This suggests that on Critical
Needs acres a significant amount of the dissolved phosphorus being
lost could be conserved through structural practice adoption, where-
as on the moderate and low needs acres nutrient management prac-
tices are imperative in order to achieve comparable reductions in
dissolved phosphorus losses. Model simulations suggest that treat-
ment of all acres with structural erosion control practices (FT;
$128.3 million, annually) provides over 4.8 times the annual benefits

Fig. 5.Model responses for spring and summer seasons by different stream order (baseline scenario): (A) sediment; (B) total nitrogen; (C) total phosphorus; (D) NO3; and (E) dissolved
phosphorus.
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in total phosphorus load reduction, but provides only 1.3 times the
dissolved phosphorus loss benefits relative to gains that could be
made with adoption of structural erosion control and nutrient man-
agement practices on Critical Needs acres only (NMC; $8.4 million,
annually). As with nitrogen management decisions, phosphorus
management strategies must take into account the importance of
treating for total phosphorus reduction or targeting dissolved phos-
phorus reduction. The conservation goal informs the appropriate
conservation strategy.

Beyond the general comparisons for each output variable, cross
comparisons between total nitrogen and total phosphorus are also in-
teresting.WLEB andmost of theMWRare heavily tiled, so thatmost ex-
cess precipitation is transported through tile drainage systems.
Rerouting water through tiles also reroutes nutrients to subsurface
pathways. Tile drains are not only loss pathways for nitrate nitrogen
and dissolved phosphorus, but have also been implicated as a loss path-
way for sediment and sediment-associated phosphorus losses (Gaynord
and Findlay, 1995; Molder et al., 2015). These results suggest that

Fig. 6. Model responses for spring and summer seasons by different stream order (NM scenario): (A) sediment; (B) total nitrogen; (C) total phosphorus; (D) NO3; and (E) dissolved
phosphorus.
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careful and comprehensive conservation planning that provides nutri-
ent loss reductions in all loss pathways is needed to provide desired ni-
trogen and phosphorus loss reductions in this unique area (Fig. 4B and
C).

3.3. Model responses enclosed in stream order levels

To examine additional information that can be obtained from the
NHDPlus resolution SWATmodel, model responses for spring and sum-
mer seasons by different stream order were examined (Figs. 5 and 6).
Larger loads are predicted during spring as compared to summer,
which is consistent with regional weather. Greater flows are expected
in WLEB during spring, when snow melt occurs. Snow melt and spring
rains may mobilize nutrients applied during spring planting or in the
previous fall.

Modeling at this scale exposed the fact that rivers with lower stream
orders have a higher degree of uncertainty. There are multiple reasons
for this uncertainty. One reason is that calibration at this scale is difficult
due to lack of calibration data; there is uncertainty associated with spa-
tial interpretations when data are lacking. Low stream order streams
and rivers are generally smaller in size, somay be less resilient to distur-
bance, such as flooding events and or anthropogenic disturbances.
Therefore, simulated nutrient and sediment quantities in low order
streams may vary substantially from reality, which estimates in higher
order streams should be better calibrated and have less uncertainty.

Because of lower order stream vulnerabilities to perturbation, con-
servation practices that benefit lower order streams are likely to be ben-
eficial to stream health in the region. These lower order streams feed
into higher order streams, which would then also benefit from the con-
servation practices that reduced loads to the lower order streams. The
biological indicators used in this work suggest that increased focus
should be placed on conservation practices that target loss reduction
in the spring season instead of the entire year (Keitzer et al., in press).

3.4. Potential reductions in degraded biological conditions

Anthropogenic disturbance, including nutrient enrichment is a serious
threat to stream biodiversity (Richter et al., 1997; Dudgeon et al., 2006;
Vörösmarty et al., 2010). Nutrient enrichment can cause excessive algal
growth, alter algal community structure and food quality, and decrease
dissolved oxygen levels, all of which can degrade stream biodiversity
(Miltner and Rankin, 1998, Dodds, 2006; Wang et al., 2007;
Evans-White et al., 2009; Miltner, 2010, Taylor et al., 2014). Understand-
ing the effectiveness of conservation actions on mitigating nutrient en-
richment of streams and rivers at the watershed-scale is therefore a key
component of effective stream biodiversity conservation.

Averaged across all nutrient criteria, we estimate that 95% of WLEB
streams have some level of nutrient enrichment that could degrade hab-
itat and decrease biodiversity (about 19,256 kmof streams). This includes
nearly 73% of the streams in the watershed estimated to have annual nu-
trient levels above TP criteria, 93% above TN criteria, and nearly 68% of
stream segments have both TP and TN concentrations above the nutrient
criteria used for this study. These estimates suggest that while both are
widespread in WLEB streams, streams are more likely to have excess ni-
trogen concentrations than excess phosphorus concentrations. However,
high levels of both nutrients co-occur across a substantial portion of the
watershed. Nutrient management strategies likely need to address both
nitrogen and phosphorus losses through all potential loss pathways to
be effective at providing benefits to stream biodiversity and health.

Our results suggest that the conservation practices simulated here are
more effective at reducing stream degradation as the result of excess
phosphorus than nitrogen (Fig. 7). We found that across all nutrient
criteria and conservation scenarios, the percent of streamswith improved
water quality associated with scenario adoption ranged from b1% to 34%
based on TP criteria and from b1% to 12% for TN criteria. Regardless of
whether one or both nutrients are selected as the dominant conservation
concern in the region, achieving large reductions will likely require

Fig. 7.Amount of thewatershed inwhich streambiological conditions improved as a result of additional investment in conservation practices reducing nutrient enrichment: (A) improved
percentage for streams that were above TP criteria; (B) improved percentage for streams that were above TN criteria; and (C) improved percentage for streams that were above both TP
and TN. Boxplots represent the interquartile range of improvements across nutrient criteria with whiskers extending to the 10th and 90th percentiles. Lines show the predicted
relationship between additional investment for conservation scenarios that included only erosion control practices (solid line) and scenarios that included erosion control and nutrient
management practices (dashed line).
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treating a substantial portion of the watershed. For instance, treating
only Critical Needs acres with erosion control and nutrient manage-
ment provides at most a 3% reduction in the percent of streams
impacted by phosphorus; treating all agricultural acres in the region
with structural controls and nutrient management can provide up to
a 34% reduction in streams impacted by phosphorus. Similar results
from a variety of watersheds suggest that conservation practices
must be widely implemented to achieve the large reductions in
nutrient and sediment losses from agricultural lands needed to im-
prove stream biodiversity throughout the watershed (Einheuser et
al., 2012; Bosch et al., 2013).

Our results also suggest that there are differences in potential re-
turn on investment of depending on the conservation concern being
addressed (Table 5, Fig. 7). Erosion control practices alone represent
a more cost effective strategy for reducing degradation by TP, while
including nutrient management proves to be a more cost effective
means for reducing degradation by TN (Table 5, Fig. 7). Because
both nitrogen and phosphorus can negatively affect stream biodiver-
sity (Miltner and Rankin, 1998;Wang et al., 2007; Evans-White et al.,
2009), it is likely necessary that bothmust bemanaged appropriately
if stream biodiversity is to be restored across the watershed. This
effort will require development of comprehensive conservation
plans and investments in both structural erosion control and nutri-
ent management.

This work only considered the benefits of conservation investments
on in-field and edge-of-field practices as they relate to nutrient losses.
However, conservation practices can also reduce sediment loading to
streams, reduce the frequency of extreme flows (e.g., stream drying),
and improve in-stream habitat, all of which should benefit stream bio-
diversity (Wang et al., 2002, 2006). We may therefore have
underestimated the potential benefits of in-field and edge-of-field con-
servation practices, particularly if multiple stressors interact to affect
stream biodiversity, which appears to be common (Townsend et al.,
2008; Matthaei et al., 2010; Wagenhoff et al., 2011, 2012). In-stream
practices were not explored here and may be valuable complements
to on-farm conservation practices.

While nutrient enrichment is a pervasive threat to stream biodiver-
sity (Richter et al., 1997; Dudgeon et al., 2006; Vörösmarty et al., 2010;
US EPA, 2015, 2016), it should be noted that it is not the only factor con-
tributing to habitat degradation in the region. Among other stressors
(e.g., invasive species), changes to in-stream habitat quality (e.g., silta-
tion), flow regimes, and riparian vegetation are also prevalent concerns
in theWLEB (Trautman, 1939; Trautman and Gartman, 1974; Karr et al.,
1985). Conservation practices simulated here are limited to in-field and
edge-of-field practices and their impacts on overland and subsurface
water flows and associated nutrients. Other stream restoration
techniques, including in-stream practices, dam removal, road improve-
ments, riparian restoration and improved floodplains connectivity,
were not considered here and may be essential to successful holistic
agroecosystem planning and streamhabitat improvement at thewater-
shed scale. Results presented here should be consideredwith the caveat
that the stressors and practices explored are limited in scope; these
scenariosmay under or overestimate the potential benefits of conserva-
tion practices in conjunction with other management across the
landscape.

4. Conclusion

In this study, SWATwas applied at the NHDPlus resolution to explore
themodel's capacity to estimatepotential environmental impacts of alter-
native conservation practices in terms of sediment and nutrient losses re-
duction with corresponding projected cost. An important finding is that
SWAT is able to parse the varied impacts of conservation practices on
total nitrogen, total phosphorus, nitrate, and dissolved phosphorus in re-
sponse to the same conservation practice. However, without adequate
monitored data, the fine-scale results cannot be appropriately validated.
This work improves SWAT's capacity to serve as a decision support tool
to determine conservation strategies associated with various conserva-
tion concerns and nutrient loss pathways. Structural erosion practices
alone provide a sufficient remedy to sediment loss and could reduce cur-
rent sediment loads lost from agricultural acres by up to 45%. The model
also demonstrated that nutrient loss reduction strategies, especially for
nitrate and dissolved phosphorus, benefit from the inclusion of nutrient
management plans. In the WLEB, dissolved phosphorus is a critical con-
cern (Daloglu et al., 2012; Baker et al., 2014). Therefore, realistically
predicting dynamic responses to management can be valuable to re-
searchers from various disciplines, as well as land use planners.

Thework presented here is not just another piece of a calibration/val-
idation project inwatershedmodeling. Instead, it is the first time in histo-
ry that the most advanced technology of delineating stream networks at
the fine resolution (NHDPlus) was implemented on a large-scale water-
shed like the WLEB. The goal of this study was to determine if the
SWAT model was capable of identifying environmental impacts caused
by agricultural activities, including various conservation strategies, at a re-
fined spatial scale by applying the state-of-the-art techniques, including
soft-data calibration. The model proved capable to simulating seemingly
reasonable statistical results.While this manuscript and themodel devel-
oped to support it provide scientists, engineers, and stakeholders with in-
creased science-based information to augment current decision support
tools for determining appropriate land management and policy develop-
ment, it should be noted that there is insufficient spatially explicit moni-
toring data in the region to support appropriate validation of the model's
spatially explicit results. It is true that the proposed finest resolution
modelmay produce uncertainty and artificial errors because of the limita-
tion. However, potential errors could cause more negative impacts on
model predictions if the associated biological analysis was conducted in
larger scale such as HUC-12 (average 72 km2 in unit size which is N27
times larger than average unit area of NHDPlus). Implementations of
finer resolution data are not only to scale down the individual unit of sim-
ulation, but it also can provide more information as indications that par-
ticular issues needed to improve in the future to enhance the accuracy
of the modeling work.
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Table 5
Coefficient estimates (95% confidence interval) from multilevel models describing the effects of additional investment (Cost), including nutrient management (Nutrient management),
and their interaction (Cost x nutrient management) on the amount of the watershed that is improved according to nutrient criteria for total phosphorus (TP) and total nitrogen (TN). Es-
timates were considered significant if bootstrapped (n = 10.000) confidence intervals did not include zero.

Nutrient Intercept Cost Nutrient management Cost × nutrient management

TP 0.91 (0.27,1.57) 0.072 (0.063, 0.079) −0.15 (−1.07,0.78) −0.02 (−0.029, −0.011)
TN 0.029 (−0.27,0.31) 0.008 (0.005, 0.01) 0.40 (0.03,0.80) 0.004 (0.0005, 0.008)
Both TN & NP 1.13 (0.56,1.68) 0.08 (0.075, 0.089) −0.17 (−0.9376,0.6494) −0.02 (−0.03, −0.015)
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Communicated by Joseph DePinto
Investment in agricultural conservation practices (CPs) to address Lake Erie's re-eutrophication may offer
benefits that extend beyond the lake, such as improved habitat conditions for fish communities throughout
the watershed. If such conditions are not explicitly considered in Lake Erie nutrient management strategies,
however, this opportunity might be missed. Herein, we quantify the potential for common CPs that will be
used to meet nutrient management goals for Lake Erie to simultaneously improve stream biological conditions
throughout the western Lake Erie basin (WLEB) watershed. To do so, we linked a high-resolution watershed-
hydrology model to predictive biological models in a conservation scenario framework. Our modeling simula-
tions showed that the implementation of CPs on farm acres in critical and moderate need of treatment,
representing nearly half of the watershed, would be needed to reduce spring/early summer total phosphorus
loads from the WLEB watershed to acceptable levels. This widespread CP implementation also would improve
potential stream biological conditions in N11,000 km of streams and reduce the percentage of streams where
water quality is limiting biological conditions, from 31% to 20%. Despite these improvements, we found that
even with additional treatment of acres in low need of CPs, degraded water quality conditions would limit
biological conditions in N3200 stream km. Thus, while we expect CPs to play an important role in mitigating
eutrophication problems in the Lake Erie ecosystem, additional strategies and emerging technologies appear
necessary to fully reduce water quality limitation throughout the watershed.

© 2016 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
Index words:
Best management practices
SWAT
Non-point source pollution
Great Lakes
Ecosystem-based management
Index of Biotic Integrity
Introduction

Reducing nutrient inputs from the western Lake Erie basin (WLEB)
watershed is integral to reversing Lake Erie's recent re-eutrophication
(Ohio EPA, 2010, 2013; Scavia et al., 2014; Annex 4, 2015). This large
watershed (~26,000 km2) drains a landscape that is N70% agricultural
and contains nearly 2 million ha of farmland that is mostly in corn and
soybean crop rotations (USDA NRCS, 2011). Multiple changes in local
agricultural practices have occurred during the past 30 years, including
the type of fertilizer used, the timing of fertilizer application, tillage
es Research. Published by Elsevier B
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practices, and increased artificial drainage, the combination of which
has increased the potential for nutrient runoff into Lake Erie from the
WLEB watershed (Richards et al., 2002; Daloğlu et al., 2012; Smith
et al., 2015). When combined with an increasing frequency of single
and multi-day severe storms during the winter and spring (Hayhoe
et al., 2010) and the widespread nature of legacy loads (Sharpley
et al., 2013; Powers et al., 2016), these changes in agricultural practices
have contributed to increased loading of highly bioavailable dissolved
reactive phosphorus into Lake Erie (Richards et al., 2010; Daloğlu
et al., 2012; Scavia et al., 2014). This excess phosphorus loading, in
turn, has helped fuel Lake Erie's re-eutrophication (Stumpf et al.,
2012; Michalak et al., 2013; Kane et al., 2014; Scavia et al., 2014). Be-
cause eutrophication poses a threat to important ecosystem services
.V. All rights reserved.
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provided by Lake Erie (Ludsin et al., 2001; Hobbs et al., 2002), reducing
phosphorus loading from WLEB tributaries is a management priority
(Ohio EPA, 2010, 2013; Scavia et al., 2014; Annex 4, 2015).

While efforts to reduce phosphorus loading will benefit Lake Erie,
the extent to which these efforts will help improve water quality and
biological conditions in the ecologically, culturally, and economically
important stream network of the WLEB watershed remains uncertain.
This network contains N20,000 km of streams and rivers that historical-
ly supported a rich diversity of invertebrates and fish (Trautman, 1981;
Krebs et al., 2010). The WLEB watershed, much like Lake Erie proper,
provides valuable ecosystem services (e.g., drinking water; recreational
opportunities such as fishing and canoeing) to residents in Indiana,
Michigan, and Ohio. Unfortunately, stream water quality in the
watershed also has become degraded during the past century, owing
in large part to the same agricultural sediment and nutrient non-point
source (NPS) runoff that has degraded Lake Erie (Karr et al., 1985;
Ohio EPA, 2014). Thus, reducing agricultural NPS runoff to help clean
up Lake Erie may offer an opportunity to improve water quality and
biological conditions throughout the WLEB stream network. Because
farmers in the area feel a strong sense of responsibility to protect
water quality in their local watersheds (Burnett et al., 2015), they
might be more willing to adopt voluntary and potentially costly
agricultural conservation practices (referred to as CPs hereafter), if
they knew that such practices would benefit their local watershed in
addition to benefiting downstream Lake Erie. Such adoption, in turn,
could lead to a potential “win-win” for user groups of both Lake Erie
and its watershed.

At present, however, perceived benefits of targeted phosphorus load
reductions for Lake Erie have not included consideration of the possible
benefits to the large stream network contained within the WLEB
watershed. Thus, the extent to which targeted load reductions to Lake
Erie also might improve water quality, biological conditions, and
ecosystem services throughout WLEB tributaries remains an important
information gap. A better understanding of where and by how much
water quality and biological conditions would change throughout the
WLEB watershed because of targeted load reductions to Lake Erie also
could help prioritize nutrient management strategies.

Because agriculture is the dominant form of land use in the WLEB
watershed, one approach to reducing nutrient loading from this
watershed is to increase implementation of CPs. These CPs could include
erosion control practices such as filter strips and cover crops, as well as
nutrientmanagement, which includes altering the rate, timing, amount,
and method of fertilizer application. Since the mid-1970s, CPs, in
particular erosion control practices such as conservation tillage, have
been widely adopted in the WLEB watershed (Richards et al., 2002).
These practices appear to have reduced nutrient and suspended
sediment concentrations in some Lake Erie tributaries (Richards and
Baker, 2002; Richards et al., 2009), and are correlated with recent
improvements in stream biological conditions (Miltner, 2015). How
effective additional investment in these and other widely adopted CPs
would be for meeting Lake Erie nutrient reduction goals remains
unknown. Even more uncertain is how additional conservation
treatment of cropland would affect stream conditions and the resident
aquatic biota within Lake Erie's watershed.

Herein, we provide findings from a coupled physical–biological
modeling study that sought to quantify the potential benefits of increas-
ing investment in CPs to stream biological conditions within Lake Erie's
watershed. More specifically, we linked an existing high-resolution
watershed-hydrology model for the WLEB watershed (Daggupati
et al., 2015a) to a predictive statistical model of an Index of Biotic
Integrity (IBI) developed from several long-term state-agency datasets
to forecast potential benefits of additional investment in CPs. While
our simulations were not designed to provide the most cost-effective
solutions nor model stream impacts of reducing phosphorus loads to
the levels recommended for Lake Erie, several of them more than
satisfactorily met the targeted reductions in phosphorus loading to the
Please cite this article as: Keitzer, S.C., et al., Thinking outside of the l
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lake. Ultimately, we discuss the potential of CPs to simultaneously
meet water quality goals in Lake Erie and benefit stream biological
conditions within the WLEB watershed.

Methods

Study area and species

We focused on theWLEBwatershed because it is integral to effective
Lake Erie nutrient management (Ohio EPA, 2010, 2013; Scavia et al.,
2014; Annex 4, 2015). This relatively flat watershed (average slope is
b2%) drains an ~26,000 km2 area in portions of Ohio, Indiana, and
Michigan (Fig. 1). Most of the watershed falls within the Eastern Corn
Belt Plains or the Huron/Erie Lake Plains Ecoregions, although a small
portion (b2%) is in the Southern Michigan/Northern Indiana Drift
Plains. Historically, this watershed was comprised of a mixture of
hardwood forests, wetlands, and prairie, which eventually succumbed
to rapid and widespread land clearing, wetland draining, and stream
channelization that began during the mid-1800s (Trautman, 1981).
Today, N70% of the watershed is in row-crop agriculture, with patchily
distributed urban and forested lands each making up ~12% of the
remaining area. Because of this topography and land-use history, most
streams in the WLEB watershed are low gradient and slow flowing,
carrying heavy nutrient and sediment loads that have negatively
impacted native stream biodiversity and Lake Erie (Trautman, 1939;
Trautman and Gartman, 1974; Karr et al., 1985; Scavia et al., 2014).

The stream network of the WLEB watershed historically supported a
diverse fish fauna (Trautman, 1981). At least 98 native fish species that
span a wide range of reproductive (e.g., nest builders, crevice spawners,
broadcast spawners), feeding (e.g., detritivores, herbivores, invertivores,
piscivores), and habitat (e.g., benthic, pelagic, littoral) guilds have been
observed in the watershed. These species have different sensitivities to
nutrient and sediment pollution (Trautman, 1981; Ohio EPA, 1987). In
turn, different fish communities occur throughout the WLEB watershed,
with their composition likely determined to some degree by the magni-
tude and intensity of agricultural runoff impacts on water quality.
Degradedwater quality in this watershed has indeed negatively affected
piscivores, herbivores, and insectivores in particular, leading to fish
communities dominated by omnivorous species (Karr et al., 1985).

Modeling stream water quality

We simulated sediment and nutrient processes and stream hydrolo-
gy using the Soil and Water Assessment Tool (SWAT; Arnold et al.,
1998). SWAT is a semi-distributed, continuous-time model developed
by the United States Department of Agriculture— Agricultural Research
Service for large-scale watershed simulation. SWAT is a robust and
flexible approach for simulating agricultural effects on hydrologic
processes that performs well relative to other watershed models in
the WLEB watershed (Gebremariam et al., 2014).

We used SWAT to develop a watershed model (Daggupati et al.,
2015a) at the 1:100,000 resolution using the National Hydrography
Database Plus Version 2 (NHDPlusV2) dataset (http://www.horizon-
systems.com/NHDPlus/NHDPlusV2_home.php). However, because
conducting simulations at this resolution was too computationally
expensive, we initially calibrated model parameters at a broader
watershed resolution (12-digit hydrologic unit code, HUC-12).
Afterwards, we transferred those parameters to the NHDPlusV2 model
to provide reasonable starting points for parameter values for this
finer-resolution model. We further calibrated monthly stream flow,
suspended sediment, total phosphorus (TP), and total nitrogen (TN)
for the NHDPlusV2 model using five river gauges that had historical
data with these attributes: 1) the Raisin River near Monroe, MI; 2) St.
Joseph River near Newville, IN; 3) St. Marys River at Wilshire, OH;
4) Maumee River at Waterville, OH; and 5) Sandusky River near
Fremont, OH. Detailed descriptions of the calibration and validation
ake: Can controls on nutrient inputs into Lake Erie benefit stream
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Fig. 1. The western Lake Erie basin watershed (IN-MI-OH, USA) contains N200,000 km of streams that drain a largely agricultural area. Points indicate the approximate locations of fish
sample collections during 1990 to 2012 (n = 841).
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procedure can be found in Daggupati et al. (2015a), but followed gener-
al guidelines for SWAT model development (Daggupati et al., 2015b).
We chose to focus on percent bias (PBIAS) over other performance
measures, such as Nash–Sutcliffe efficient (NSE), because PBIAS
measures how well the model captures long-term average conditions,
whereas measures such as NSE better assess the ability to capture
extreme events (e.g., storm runoff). Because we expected long-term av-
erage conditions would have a larger effect on fish communities than
extremes, our effort focused on reducing the model's PBIAS.

Predictive models of fish community health

We used a multi-metric fish community index, the IBI, to assess
stream biological condition (Karr, 1981; Karr et al., 1986). Indices of
biotic integrity, which compare biotic communities in a given stream
reach to those expected in reference conditions (i.e., streams less
disturbed by human activity), are commonly used by state and federal
management agencies, academic researchers, and conservation organi-
zations as a measure of stream biological condition. To calculate IBI
values, we used fish community data collected at numerous stream
sites throughout the WLEB (Fig. 1) by the Indiana Department of Envi-
ronmental Management (n = 18 segments), Michigan Department of
Environmental Quality and Michigan Department of Natural Resources
(n = 101 segments), and the Ohio Environmental Protection Agency
(n = 722 stream segments) during 1990 to 2012 (n = 841 unique
stream segments). Fish sampling methods were similar among states,
with electro-shocking procedures that varied more within each agency
(based on the size of the stream sampled) than among agencies (Ohio
EPA, 1987;MichiganDEQ, 1997; Indiana DEM, 2007). Because sampling
protocols were designed to comprehensively evaluate fish communities
based on species relative abundances, we assumed that they generated
accurate samples of the fish community across the basin (Esselman
Please cite this article as: Keitzer, S.C., et al., Thinking outside of the l
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et al., 2013). We rigorously evaluated each dataset to ensure that all
collections were indeed community samples, species occurrences
accurately reflected their range, and site locations were geographically
accurate, similar to the approach used in Esselman et al. (2013). From
these fish community data, we calculated the IBI according to
Michigan's Procedure 51 (P51; Michigan DEQ, 1997). We rescaled P51
scores to have a minimum of 0 and a maximum of 1, with a higher
score indicating a better biological condition.

Fish community samples were spatially linked to an NHDplusV2
stream segment based on latitude and longitude, as well as written de-
scriptions of their location.We assumed a sample was representative of
the entire stream segment. In cases where multiple sites were sampled
within the same stream segment in the same year, we used the average
IBI of those samples to represent the stream segment. For stream
segments sampled during multiple years, we used the most recent
fish community sample to reflect conditions during our watershed
simulation period as closely as possible. This procedure resulted in a
varying number of yearly samples through time, although some years
had particularly large sample sizes (Fig. A1).

Wewere particularly interested in understandinghownutrients and
suspended sediments affected stream biological conditions. We chose
these stressors because they can affect stream biotic communities in
multiple ways (e.g., Waters, 1995; Evans-White et al., 2009; Miltner,
2010; Taylor et al., 2014), and a primary approach tomitigate eutrophi-
cation in Lake Erie is implementation of CPs to reduce sediment and
nutrient runoff from farm fields in the watershed. Because we were
uncertain as to whether annual or sub-annual (seasonal) nutrient and
sediment concentrations would better predict IBI scores, we included
average annual, springtime, and summertime concentrations as
predictors in our models. We focused on spring and summer because
we expected agricultural pollution to have its largest impacts during
these two eco-hydrological periods. These two periods also reflect
ake: Can controls on nutrient inputs into Lake Erie benefit stream
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different aspects of the seasonal hydrograph and are important to the
life-history of most fishes in the WLEB watershed. We defined the
spring period as 1 March through 30 June, which encompasses the fall-
ing limb in the typical WLEB hydrograph (SCK, unpublished data) and
the period when most fishes spawn (Auer, 1982, Ohio Division of
Natural Resources, website contains fish reproductive behavior,
accessed on 20 Aug. 2014: http://wildlife.ohiodnr.gov/species-and-
habitats/species-guide-index/fish; M. Kibbey, The Ohio State University
Museum of Biological Diversity, 2015, personal communication). We
defined the summer period as 1 July through 30 September, which
covers base-flow conditions and encompasses the growing season of
most fishes.

To assess whether stream water quality was limiting stream-fish
community health, we used multiple quantile regression to model the
relationship between observed IBI scores and water quality attributes
generated by our watershed model (i.e., stream discharge and TP, TN,
and suspended sediment concentrations). Water quality attributes for
each stream segment were derived by determining the annual median
concentration (mg/L) for each time period and then calculating the
average of these values from the 21-year SWAT simulation (1990–
2010; Table A1). Thus, our measures of water quality reflect long-term
average conditions within a stream segment. We used quantile regres-
sion because it can reveal reliable relationships despite not all influen-
tial (i.e., limiting) factors being measured, which often is the case with
ecological data (Cade and Noon, 2003). We modeled the upper 97th
percentile of IBI scores (hereafter referred to as themaximum IBI) in re-
lation to water quality attributes because modeling upper percentiles
offers a means to identify limiting relationships (Cade et al., 1999).

We used Akaike's Information Criterion adjusted for small sample
size (AICc) to identify the best supportedmodels that could reliably pre-
dict a maximum IBI score. Because multiple water quality stressors
often co-occur and interact to affect stream biota (Townsend et al.,
2008; Matthaei et al., 2010; Piggott et al., 2015), we included different
additive and interactive effects of water quality stressors in our initial
candidate set ofmodels (Table A2).We did not includewater quality at-
tributes from multiple time periods (i.e., annual, spring, or summer) in
the samemodel to avoid fitting overly complexmodels.We also includ-
ed average stream discharge (L/s) as an additive effect in all models to
account for the influence that stream size has on fish communities
(Sheldon, 1968; Horwitz, 1978; Angermeier and Schlosser, 1989).

We did not include covariates that were highly correlated (r≥ |0.7|;
Table A3) in the samemodel to avoid potential prediction errors associ-
ated withmulticollinearity (Dormann et al., 2013). As a result, we could
not include TN or TP in the same models. Because both TN and TP can
degrade stream fish biotic integrity (Miltner and Rankin, 1998; Wang
et al., 2007), we felt it was important to evaluate the potential limiting
effect of TN and TP. We therefore developed a separate set of candidate
models containing TN or TP (Table A2), and selected the best supported
model from each candidate set as the model with the lowest AICc score
(Burnham and Anderson, 1998). We then evaluated the accuracy of the
best TN and TP model using k-fold cross-validation (k = 10). Because
predictions of the maximum IBI from our quantile regression models
were expected to be higher than observed values, we adopted assess-
ment statistics from Vaz et al. (2008). For each k-fold training and test
dataset, we calculated the Spearman's rank correlation coefficient (rs)
between observed and predicted maximum IBI and the percentage of
observed scores that fell below our predictions. We considered the
models acceptable, if 1) we found a statistically significant and positive
correlation for each k-fold and 2) at least 97% of the observed values, on
average, fell below our predicted value.

We used the best supported and validated TN model and TP model
to make separate forecasts of the maximum IBI with a stream segment
based on water quality conditions generated from our watershed simu-
lation. We then selected the lowest score from these forecasts to use as
the maximum IBI score within a stream segment. This approach as-
sumes that either TN or TP, along with potential interactions with
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stream discharge and suspended sediment concentration, is limiting
stream fish communities in a stream segment. Thus, whichever model
predicts the lowest score represents the maximum IBI given the simu-
lated water quality conditions.

We standardized all water quality variables to have a mean of zero
and standard deviation of one to place water quality attributes on the
same scale. While discharge data were log10-transformed to achieve
linearity, transformations of other water quality variables were not
necessary. We logit-transformed observed IBI scores because values
were bounded between zero and one. All biological models were
developed and analyzed with the quantreg package (Koenker, 2015)
in the R statistical environment (R Core Team, 2015). We used the
MuMIn package (Barton, 2015) to calculate model selection statistics.

Conservation scenarios

We used conservation scenarios developed as part of the USDA's
Conservation Effects Assessment Project (CEAP) Cropland National As-
sessment to examine the potential benefits of increasing investment
in CPs for improving streambiological conditions and Lake Erie nutrient
management. These scenarios consisted of applying erosion control and
nutrient management CPs at three treatment levels in the WLEB. The
erosion control practices included were filter strips, field borders, sur-
face roughening, herbaceous and forest riparian buffers, wind erosion
control, cover crops, and residue tillagemanagement. Nutrientmanage-
ment consisted of altering the timing, amount, rate, and/or form of nu-
trient application.

The CPs were applied to 1) only farm acres in critical need of treat-
ment, 2) farm acres in critical and moderate need of treatment, and
3) all acres. An acre's need for CPs was determined by its level of inher-
ent vulnerability for nutrient and sediment loss and its level of treat-
ment based on farmer surveys from a subset of the National Resources
Inventory (USDA NRCS, 2011). According to these farmer surveys,
about 8% (384,160 acres) of the watershed is in critical need of treat-
ment and 40% (1,920,800 acres) is in moderate need of treatment for
at least one resource concern (i.e., sediment, phosphorus, or nitrogen
loss through surface or subsurface flows; USDA NRCS, 2011). In most
cases, several CPs were applied to the same field to address multiple re-
source concerns (USDANRCS, 2011).We assumed a CP adoption rate of
80% on the acres in need of treatment and that the “best” option would
be chosen on 75% of the treated acres to implicitly account for limita-
tions in CP adoption associated with individual farmer behavior. In
addition to these three conservation scenarios, we included a
“grassland” scenario in which we replaced all agricultural land with
native grasses. This grassland scenario served as a theoretical upper
benchmark to assess impacts of agricultural runoff and the effectiveness
of CPs.

Assessing the benefits of conservation scenarios

We simulated edge-of-field reductions in agricultural runoff from CP
implementation using the Agricultural Policy/Environmental eXtender
(APEX) model (Gassman et al., 2009). APEX is a flexible model capable
of simulating a broad array of agricultural management options, includ-
ing nutrient management, tillage operations, cropping systems, and CPs
(Wang et al., 2011). A major advantage of APEX is that spatially explicit
relationships in field units allow for realistic and physically-based sim-
ulations of CP reductions in surface and subsurface runoff (Wang
et al., 2011). Reductions in agricultural runoff were simulated in APEX
through alteration of a number of model parameters (e.g., curve num-
ber) according to a mixture of empirical and theoretical data (Wang
et al., 2011). Reductions at the field-scale were aggregated for an
NHDplusV2 catchment and coupled to ourwatershedmodel to simulate
changes in water quality and phosphorus loads during 1990 to 2010 in
each conservation scenario.
ake: Can controls on nutrient inputs into Lake Erie benefit stream
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Wecalculated the combined spring/early summer TP loads (1 Feb. to
31 July) from fourmajorWLEB tributaries (River Raisin, Maumee River,
Portage River, and Sandusky River) to examine the effectiveness of con-
servation scenarios for meeting Lake Erie nutrient management goals.
These nutrient management goals recommend a 40% reduction in TP
loads relative to 2008 loads to reduce the likelihood of harmful algal
bloom formation in Lake Erie (Ohio EPA, 2013; Annex 4, 2015). Howev-
er, observed TP loading datawere not available for spring/early summer
in 2008 for the River Raisin or Portage River (tributary loading data from
National Center for Water Quality Research, accessed on 3March 2016:
www.heidelberg.edu/academiclife/distinctive/ncwqr/data/data). We
therefore used a target TP load of 974.39MT, which represents a 40% re-
duction from our simulated load for major WLEB tributaries in 2008.

To assess the potential benefits of CP implementation for improving
stream biotic integrity, we first forecasted the potential maximum IBI in
each stream segment for the three conservation scenarios. We used
one-sided paired t-tests to determine if the maximum IBI score was
greater in conservation scenarios than in the baseline scenario. We
then calculated the amount of stream kilometers in which the
maximum IBI improved as our first stream assessment measure. For
our second stream assessment measure, we examined the average
change in maximum IBI scores that occurred in each scenario to assess
the magnitude of improvements in stream fish communities that
occurred with additional CP investment. We used one-sided paired t-
tests to determine if the change inmaximum IBI scores continued to in-
crease with increasing CP implementation. To better understand what
changes in water quality were responsible for changes in themaximum
IBI,we examined correlations between changes in themaximum IBI and
changes in water quality attributes across all scenarios.

For our third stream assessmentmeasure, we used different percen-
tiles of the observed fish community data to assess where water quality
was limiting fish community conditions. We considered streams where
the potential maximum IBI score was below the 70th percentile of the
observed data (IBI b 0.65) to be “limited” by water quality, those
between the 70th and 90th percentiles (0.65 ≤ IBI b 0.80) to be
“moderately limited” by water quality, and those greater than the
90th percentile (IBI ≥ 0.80) of the observed data to be “not limited” by
water quality. We assessed a conservation scenario's effectiveness by
examining how the percentage of the total stream length in each of
these categories changed from baseline conditions.
Results

Watershed model performance

We considered watershed model performance acceptable if the
PBIAS during model validation was ±25% for stream discharge, ±55%
for suspended sediment loads, and ±70% for TN and TP loads (Moriasi
et al., 2007). Based on these performance ratings, our watershed
model performed well for all water quality attributes but stream dis-
charge in the River Raisin (Table 1). Althoughwe did not specifically cal-
ibrate for NSE or the coefficient of determination (R2), our watershed
Table 1
Model validation statistics for the watershed model at themonthly time-step for stream discha
port the coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), and percent bias (PBI
model development. Bold values indicate acceptable model performance based on the PBIAS (

Station

Stream discharge Suspended sediment

R2 NSE PBIAS R2 NSE PB

River Raisin 0.72 0.43 26% 0.36 0.27 −
St. Joseph River 0.78 0.74 −19% 0.26 −0.01 20
St. Marys River 0.49 0.43 −25% 0.13 0.13 −
Maumee River 0.92 0.88 −14% 0.66 0.66 10
Sandusky River 0.76 0.75 −7% 0.35 −0.97 35
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model performed reasonably well for the Maumee River and Sandusky
River, withNSE and R2 N 0.5 formost parameters (Table 1). Performance
was less accurate at other gauges based on these measures for stream
discharge, and was poor in many cases for other parameters. Thus, our
model accurately captured long-term average conditions across thewa-
tershed, but performed less well at capturing extreme events. In terms
of simulating annual spring/early summer TP loads from WLEB tribu-
taries, the watershed model performed well (R2 = 0.70) and tended
to underestimate TP (PBIAS = −15.5) loads from WLEB tributaries
(Fig. 2a).
Biological model performance

The best-supported TN model for predicting maximum IBI scores in
the WLEB watershed included spring discharge, spring suspended sed-
iment concentration, and an interaction between spring TN concentra-
tion and spring suspended sediment concentration as predictors
(Table 2). The best-supported TP model also included an interaction
with suspended sediment concentration, but in this case, annual water
quality conditions were selected. Validation statistics suggest that
both the TNmodel and TPmodel performedwell (Table 2). The average
rs for the TN model was 0.52 (range = 0.43–0.63) and 0.51 (range =
0.40–0.58) for the TP model, with all relationships statistically signifi-
cant (p-values b 0.001). The average percentage of the observed IBI
scores that fell below the predicted values was 97% for the TN model
(range=94–100%) and TPmodel (range=93–99%). Overall, these sta-
tistics indicated that bothmodels correctly identified the upper limits in
stream biotic integrity (maximum IBI) based on stream discharge and
the water quality attributes that we modeled.
Baseline conditions

Fish community health
According to our classifications of water quality limitation, we found

that 31% (6323 km) of streamswere limited, 43% (8781 km)weremod-
erately limited, and 25% (5154 km)were not limited bywater quality in
the baseline scenario (Fig. 2a; Table 3). Thus, if we assume that remov-
ing water quality as a limiting factor for all streams represents an ideal
goal for stream conservation, water quality appears to be limiting
stream fish communities to some degree in ~75% (15,104 km) of
WLEB streams.
Lake Erie loads
Inputs of TP into Lake Erie from major WLEB tributaries varied con-

siderably during our 21-year simulation (Fig. 2a). The average spring/
early summer TP load from major WLEB tributaries into Lake Erie was
estimated as 1186 metric tons (MT). The Maumee River contributed
nearly 74% of this load (873 MT). The next highest contributor was
the Sandusky River (195 MT), followed by the River Raisin (66 MT)
and the Portage River (51 MT). The combined TP loads from major
WLEB tributaries exceeded management targets in 15 of the 21 years.
rge and suspended sediment, total phosphorus (TP), and total nitrogen (TN) loads. We re-
AS), but focused onminimizing PBIAS, which reflects long-term average conditions, during
Moriasi et al., 2007).

TP TN

IAS R2 NSE PBIAS R2 NSE PBIAS

35% 0.44 −0.96 23% 0.5 0.35 −4%
% 0.26 −0.56 −5% 0.69 −0.64 69%
19% 0.24 0.07 −9% 0.31 0.27 −21%
% 0.79 0.78 −3% 0.71 0.69 −13%
% 0.54 0.38 −1% 0.64 0.57 12%

ake: Can controls on nutrient inputs into Lake Erie benefit stream
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Fig. 2. Modeled baseline conditions (1990–2010) of (a) and (b) distribution of stream
biological conditions, as measured by an Index of Biotic Integrity for fish (max IBI).
Combined total phosphorus (TP) during spring/early summer from major tributaries in
the western Lake Erie basin (WLEB). Observed nutrient loading data are from the
National Center for Water Quality Research at Heidelberg University (accessed on 10
Nov 2015: www.heidelberg.edu/academiclife/distinctive/ncwqr). Totals do not include
the contribution of the Portage River because no observed loading data were available
from the 1990s.

Table 3
Percentage of the total western Lake Erie Basin stream length that fell within different
stream biological categories for the Index of Biotic Integrity (IBI) under baseline condi-
tions, the three conservation scenarios (Critical, Critical & Moderate, All), and the grass-
land scenario. The mean (s.d.) maximum IBI that occurred based on simulated water
quality conditions is also shown. “Acres treated” refers to the type of farm acres treated
in each conservation scenario based on their need for conservation treatment. The base-
line and grassland conditions are shown for reference, respectively representing average
water quality conditions (1990–2010) and the theoretical upper benchmark.

Acres treated Average maximum
IBI

Limited Moderately
limited

Not
limited

Baseline 0.71 (0.13) 31 43 25
Critical 0.72 (0.13) 29 45 26
Critical & Moderate 0.74 (0.12) 20 50 30
All 0.75 (0.12) 16 53 31
Grassland 0.76 (0.11) 11 54 35
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Potential benefits of conservation scenarios

Stream water quality
The implementation of CPs improved stream water quality

throughout the watershed (Table 4). Predicted nutrient and
Table 2
The best supported predictive total nitrogen (TN) and total phosphorus (TP)models of Index of
based on Akaike's Information Criterion adjusted for small sample size (Table A2). Parameter es
suspended sediments (SS), and interactions between TN and SS (TN × SS) and TP and SS (TP × S
rank coefficient (rs) and the percentage of observed values that were below predictions (%
conditions and the TN model is for average spring conditions.

Model Intercept Q TN TP S

TN 1.63 0.69 −0.41 –
TP 1.60 0.66 – 0.08 −
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sediment concentrations varied across scenarios, with average in-
stream suspended sediment and nutrient concentrations declining
as the number of acres treated increased (Table 4). These improve-
ments in water quality were small when only critical acres were
treated with CPs (b7% on average). However, across spring and
summer seasons, average reductions of 38% for TN, 45% for TP, and
51% for suspended sediments occurred when all farm acres were
treated (Table 4). These reductions were not due to CP effects on
river flows, as average stream discharge either increased slightly
(b3%) with CP implementation (Critical & Moderate and All scenari-
os) or declined negligibly (0.02%) relative to baseline conditions
(Critical scenario; Table 4).

We also found that water quality stressors may increase in some
stream segments with CP implementation. These increases occurred in
18% of the watershed on average when only critical farm acres were
treated, 5% when critical and moderate acres were treated, and 2%
when all farm acre types were treated. The largest increases occurred
when only critical farm acres were treated and related to increases dur-
ing the spring. Changes were generally small, with mean changes of 3,
0.004, 0.09 mg/L for suspended sediments, TP, and TN, respectively.
However, large changes did occur in some stream segments; the largest
increase in suspended sediment concentration was 79 mg/L, 0.05 mg/L
for TP, and 1.04 mg/L for TN.

Fish community health
One-sided paired t-tests showed that improvements in the average

maximum IBI score were statistically significant with CP implementa-
tion compared to the baseline scenario in our simulations (p-values of
all comparisons b0.001). The length of streams with a predicted
increase in their maximum IBI ranged from 5436 km (27% of the
watershed; critical acres treated) to 13,297 km (66% of the watershed;
all acre types treated) of the watershed (Fig. 3a). While the average
change in the maximum IBI across the watershed was generally small
(range= 0.005 to 0.04; Fig. 3b), comparisons of conservation scenarios
indicate that increasing CP implementation continued to increase the
change in maximum IBI (critical acres vs. critical and moderate acres:
t9158 = 46.74, p-value b 0.001; critical and moderate acres vs. all
acres: t9158 = 43.87, p-value b 0.001). Despite relatively small changes
Biotic Integrity scores for fish in thewestern Lake Erie basinwatershed during 1990–2012,
timates on the logit-scale are shown for themodel intercept, stream discharge (Q), TN, TP,
S). Model validation statistics shown are themean (standard deviation) of the Spearman's
below) from the k-fold cross-validation. Note that the TP model is for average summer

S TN × SS TP × SS rs %
below

0.16 0.12 – 0.52 (0.06) 97 (2)
0.21 – 0.25 0.51 (0.07) 97 (2)

ake: Can controls on nutrient inputs into Lake Erie benefit stream
g/10.1016/j.jglr.2016.05.012
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Table 4
Average water quality parameters for spring and summer discharges, total nitrogen (TN), total phosphorus (TP), and suspended sediment. “Acres treated” refers to the type of farm acres
treated in each conservation scenario based on their need for conservation treatment. The baseline and grassland conditions are shown for reference, respectively representing average
water quality conditions (1990–2010) and the theoretical upper benchmark.

Acres treated Discharge
(L/s)

TN
(mg/L)

TP
(mg/L)

Suspended sediment
(mg/L)

Spring Summer Spring Summer Spring Summer Spring Summer

Baseline 3727 1243 8.75 2.29 0.25 0.16 171.49 99.06
Critical 3726 1248 8.17 2.15 0.23 0.15 157.89 94.01
Critical & Moderate 3770 1256 6.18 1.68 0.16 0.12 113.96 76.21
All 3809 1262 5.4 1.4 0.12 0.1 70.48 55.65
Grassland 3797 1261 1.94 0.68 0.05 0.07 29.24 33.6
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in the maximum IBI overall, substantial improvements were possible in
some stream segments; the largest change in the maximum IBI ranged
from 0.21 to 0.36 across the three CP scenarios, with changes in
maximum IBI scores positively related to the number of acres treated.
Across all scenarios, the change in themaximum IBI was strongly corre-
latedwith reductions in TN concentrations (rs=−0.60, p b 0.001), and
to a lesser degree, by reductions in TP concentrations (rs = −0.47,
p b 0.001), suspended sediment concentrations (rs = −0.37,
p b 0.001), and increases in discharge (rs = 0.14, p b 0.001).

These changes translated into large areas where water quality was
no longer limiting stream biological conditions (Table 3). For instance,
our model simulations predicted that the percentage of the WLEB wa-
tershed stream kilometers limited by water quality would be reduced
to 20% (from 31% under baseline conditions) when all acres types are
treated with CPs (Table 3). This represents 2228 stream km where
water quality was no longer limiting biological conditions. Despite CPs
resulting in a net improvement in biological conditions, it should be
noted that we observed declines in the maximum IBI score in each CP
scenario. These declines occurred in 7%, 8%, and 5% of the watershed
from our least to most intensive CP scenarios.
Fig. 3. Potential of agricultural conservation practices (CPs) to improve stream biological condi
into Lake Erie. (a) Percentage ofWLEB streams inwhichmaximum Index of Biotic Integrity (max
(c) combined annual spring/early summer total phosphorus (TP) loading frommajorWLEB trib
extending to the minimum and maximum values of the change in max IBI scores or the annua
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Lake Erie loads
Our modeling simulations also indicated that investment in CPs

could sufficiently reduce TP loads into Lake Erie to meet loading goals
(Fig. 3c). To do so, however, a large additional portion of farm acres
would need to be treated. Implementing CPs to only the acres in critical
need of treatment (~8% of thewatershed) resulted in an average TP load
of 1088 MT, with loads exceeding the target load in 13 out of 21 years.
By contrast, applying CPs to acres in critical and moderate need (~48%
of the watershed) resulted in an average TP load of 766 MT, with TP
loads exceeding the target in only 4 of 21 years. Further benefits were
possible by treating all acre typeswith CPs; the average TP load dropped
to 575 MT and only 2 years exceeded the target load.

Improvements relative to grassland scenario
While improved biological conditions were predicted with CP

implementation, even the treatment of all acre types with CPs did not
reach the levels simulated in the grassland scenario. While our simula-
tions revealed that the length of streams with improved maximum IBIs
was only 1.2- to 3.6-fold higher in the grassland scenario relative to our
three CP scenarios (Fig. 3a), the average change (i.e., increase) in
tions and reduce phosphorus loading from the western Lake Erie basin (WLEB) watershed
IBI) score improved, (b) average change in themax IBI scorewithin a streamsegment, and
utaries (dashed line is baseline loading). Boxes span the interquartile range withwhiskers
l spring/early summer load from 1990 to 2010.

ake: Can controls on nutrient inputs into Lake Erie benefit stream
g/10.1016/j.jglr.2016.05.012
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maximum IBI was between 1.4- and 8.4-fold higher for the grassland
scenario (Fig. 3b). Similarly, the percentage of the WLEB watershed
limited by water quality was between 1.4- and 2.6-fold lower in the
grassland scenario relative to the three CP scenarios, while the
percentage of streams not limited by water quality was between 1.3-
and 1.1-fold higher than in the three CP scenarios (Table 3).

Discussion

Our biophysical modeling simulations suggest that CP implementa-
tion will need to be widespread to meet nutrient management goals
for Lake Erie and improve stream biological conditions. We found that
only treating farm acres in critical need of CPs (~8% of the farm acres)
resulted in slight reductions in spring/early summer TP loads, with TP
loads exceeding the target load ~62% of the time. If a larger portion of
farm acres were treated with CPs (e.g., those in critical and moderate
need or about ~48% of the farm acres), however, our simulations
show that it would be possible to meet nutrient management goals for
TP loading in 18 of the 21 years we simulated. Other Great Lakesmodel-
ing efforts also have suggested that widespread implementation of CPs
may be needed to reduce nutrient loading (Hobbs et al., 2002; USDA
NRCS, 2011; Bosch et al., 2013; Scavia et al., 2016). Similarly, wide-
spread CP implementation was needed to reduce water quality limita-
tion on stream biological conditions. Implementing CPs on farm acres
in critical need of treatment improved the maximum IBI in ~27% of
thewatershed, but themagnitude of these changes was relatively mod-
est compared to more widespread CP implementation. For instance,
treating farm acres in critical and moderate need not only improved
stream biological conditions in nearly twice as many stream kilometers
compared to only treating farm acres in critical need, but themagnitude
of these changes was nearly four times as large on average. Bothmodel-
ing (Einheuser et al., 2012) and empirical (Wang et al., 2002) studies in-
dicate that widespread CP implementation is needed to improve stream
biological conditions. Taken together, these studies support our conclu-
sion that CP implementationwill need to bewidespread to achieve Lake
Eriewater quality goals and improve streambiological conditions across
the WLEB watershed.

While both TP and suspended sediments certainly appear to be af-
fecting fish community health in the WLEB watershed, our modeling
suggests that reductions in stream TN concentrations would lead to
the largest improvement in stream biological conditions. High nitrogen
concentrations negatively affect stream fish communities (Miltner and
Rankin, 1998; Wang et al., 2007; Miltner, 2010); likely because excess
nitrogen feeds algal productivity (Dodds et al., 2002, 2006; Miltner,
2010) which, in turn, alters dissolved oxygen levels in streams
(Miltner and Rankin, 1998; Miltner, 2010). Excess nitrogen may also
alter the quality of food resources (Evans-White et al., 2009) and
some forms of nitrogen, such as nitrate,may be toxic to fish at chronical-
ly high levels (Camargo et al., 2005).While CP implementationwas able
to reduce TN concentrations by ~40%when all acres were treated, these
reductions, when combined with other water quality stressors, were
unable to remove water quality limitation across the whole watershed.

Along these lines, our modeling suggests that while CPs will im-
prove stream water quality, they are not a panacea. Even if CPs
were implemented across the majority of agricultural lands in the
watershed (i.e., all farm acre types treated), not all stream fish com-
munities would become free from limitation by nutrient and sedi-
ment pollution. For instance, N3241 stream km would still be
limited by poor water quality in this conservation scenario. We also
found that stream biological conditions might actually decrease in
some areas, a result observed in a similar study (Einheuser et al.,
2012). This may reflect the fact that water quality stressors increased
with CP implementation in some stream segments. It is unclear why
these increases occurred, but other modeling studies suggest that CP
implementation can sometimes increase NPS pollution (Einheuser
et al., 2012; Scavia et al., 2016). Widespread implementation of CPs
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also fell short of the stream biological conditions observed in the
grassland scenario, indicating that it is unrealistic to expect CPs to
achieve these more “natural” conditions. Thus, additional ap-
proaches (e.g., further reducing point sources and urban and subur-
ban runoff), emerging technologies, and more efficient CP
implementation (i.e., optimized placement of CPs) may be necessary
to further reduce water quality limitation of stream biological condi-
tions throughout the watershed.

Our modeling exercise was admittedly imperfect and may underes-
timate the potential effectiveness of CPs for improving water quality.
For example, our scenario approach used CPs that are currently in
wide use across the WLEB watershed and does not apply the newest
(e.g., tile biofilters, two-stage ditches, ditch plugs) or necessarily the
most appropriate management options (e.g., wetlands and drainage
water management were not included). Farm fields often contain
acreage with various inherent vulnerabilities, including some areas
that are more prone to leaching losses and some that are more prone
to runoff losses. Accounting for these inherent vulnerabilities through
comprehensive conservation planning would potentially allow land
managers and decision makers to develop more holistic and effective
conservation plans to address specific resource concerns on specific
acres with the most appropriate and up to date practices. If done,
achieving greater reductions in nutrient and sediment runoff might be
possible by employing a more optimized management approach than
we simulated in our scenarios.

Our approach also does not consider how continued climate change
may affect the region. Climate change is expected to increase Maumee
River discharges into Lake Erie during winter and spring, when farm-
land typically remains fallow and the potential for nutrient runoff is
high (Cousino et al., 2015). Forecasted changes in rainfall patterns
(e.g., more intense storms) also may reduce the effectiveness of CPs in
controlling agricultural runoff (Hall et al., this issue). Research is needed
to understand how continued climate change might alter the amount
and types of CPs needed to address agricultural NPS. Such information
would allow for the development of more effective nutrient manage-
ment strategies to rehabilitate and protect Lake Erie and the biological
communities within its watershed.

Despite these limitations, we feel that our general approach of using
a biophysicalmodel to quantify the impact of CPs onwater qualitywith-
in the lake, as well as within its watershed, is valuable for two reasons.
First, our modeling indicates that the use of CPs to meet nutrient
management goals will lead to a “win-win” for both Lake Erie and its
watershed. Agriculturally-driven NPS pollution is diffuse by its nature,
with numerous sources contributing unquantified amounts of nutrients
and sediments across large areas (Carpenter et al., 1998). Our modeling
shows that sufficiently treating this diffuse problem to address down-
stream concerns also may benefit biological conditions throughout the
large stream network of the WLEB watershed. Second, our modeling
approach offers a way to facilitate more holistic and considered
conservation planning by showing that management strategies
designed to rehabilitate Lake Erie—which can be hundreds of kilometers
downstream from some farms (e.g., those in Michigan or the south-
western part of the basin in Ohio)—also can benefit water quality and
fish communities in local streams. This knowledge may help motivate
famers to adopt voluntary conservationpractices, especially considering
that farmers in theWLEBwatershed feel a strong sense of responsibility
for their local water quality (Burnett et al., 2015).

Conclusions

Our study offers four key insights that are relevant to the manage-
ment of Lake Erie and other ecosystems suffering from eutrophication
driven by agricultural runoff. First, efforts aimed at cleaning up a
downstream ecosystem also are likely to benefit water quality and
biological communities in local streams in the surrounding watershed.
This notion is supported by findings from other watersheds in which
ake: Can controls on nutrient inputs into Lake Erie benefit stream
g/10.1016/j.jglr.2016.05.012
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fish communities (Wang et al., 2002; Christensen et al., 2012; Miltner,
2015) were shown to benefit from in-stream habitat and water quality
associated with CPs. Second, the implementation of CPs likely will need
to be widespread within the WLEB watershed to achieve Lake Erie nu-
trient management and watershed conservation goals. This notion is
supported by other, similar studies conducted across the Great Lakes
Region, including Lake Erie (Hobbs et al., 2002; USDA NRCS, 2011;
Bosch et al., 2013; Einheuser et al., 2012; Scavia et al., 2016). Third,
while our modeling suggests that CPs are likely to improve the health
of the Lake Erie ecosystem, expectations should be realistic and it is
likely that some areas of degraded conditions will persist. For instance,
even if CPs were implemented across most of the watershed, stream
biological conditions may still be limited by water quality in the most
degraded areas of the watershed. In addition, other factors unrelated
to water quality [e.g., invasive species, dispersal barriers, and habitat
degradation (e.g., channelization, lack of riparian vegetation)] also likely
would limit full recovery (Ohio EPA, 1999; Wang et al., 2006). Finally,
because farmers can feel a strong sense of responsibility for their local
water quality (Burnett et al., 2015), which likely reflects their consider-
ation of local ecosystem services (e.g., fishing and swimming opportuni-
ties, availability of safe drinking water), more studies that consider the
benefits of CPs to the surrounding stream network—not just the larger
downstream ecosystem—are needed. Such knowledge could prove
useful in helping promote the value of CPs to farmers and policymakers,
especially when they can lead to a “win-win” for far-off water quality
management and local biological conservation.
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