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Abstract
1.	 The use of biomarkers (e.g., genetic, microchemical and morphometric characteris-
tics) to discriminate among and assign individuals to a population can benefit spe-
cies conservation and management by facilitating our ability to understand 
population structure and demography.

2.	 Tools that can evaluate the reliability of large genomic datasets for population dis-
crimination and assignment, as well as allow their integration with non-genetic 
markers for the same purpose, are lacking. Our r package, assignPOP, provides both 
functions in a supervised machine-learning framework.

3.	 assignPOP uses Monte-Carlo and K-fold cross-validation procedures, as well as 
principal component analysis, to estimate assignment accuracy and membership 
probabilities, using training (i.e., baseline source population) and test (i.e., valida-
tion) datasets that are independent. A user then can build a specified predictive 
model based on the relative sizes of these datasets and classification functions, in-
cluding linear discriminant analysis, support vector machine, naïve Bayes, decision 
tree and random forest.

4.	 assignPOP can benefit any researcher who seeks to use genetic or non-genetic data 
to infer population structure and membership of individuals. assignPOP is a freely 
available r package under the GPL license, and can be downloaded from CRAN or 
at https://github.com/alexkychen/assignPOP. A comprehensive tutorial can also 
be found at https://alexkychen.github.io/assignPOP/.
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1  | INTRODUCTION

The ability to discriminate among resident and immigrant individuals in 
local populations and then identify the source populations from which 
immigrants originated can facilitate species conservation and manage-
ment (Manel, Gaggiotti, & Waples, 2005). Numerous types of data have 

been applied towards this goal (reviews in Begg & Waldman, 1999; 
Cadrin, Kerr, & Mariani, 2013; Hobson, 1999; Waples & Gaggiotti, 
2006). Most prominent across all taxa has been the use of genetic 
markers (e.g., microsatellites, SNPs); however, other data types have 
also been used, including artificial tags and various types of natural 
tags such as morphological traits (Cadrin, 2000), parasites (Mackenzie, 
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2002), fatty acid composition (Czesny, Dabrowski, Christensen, Van 
Eenennaam, & Doroshov, 2000), and elemental or isotopic composi-
tion of fish otoliths (Campana, Fowler, & Jones, 1994), bird feathers 
(Clegg, Kelly, Kimura, & Smith, 2003) and invertebrate shells (Becker, 
Levin, Fodrie, & McMillan, 2007). While the use of genetic markers has 
improved our ability to understand population-level phenomena, in-
cluding life-history variation (Gibbs et al., 1990; Koehler, Pearce, Flint, 
Franson, & Ip, 2008; Ross, 2001) and population dynamics (Hardesty, 
Hubbell, & Bermingham, 2006; Hellberg, Burton, Neigel, & Palumbi, 
2002), current methods used for integrating genetic data with infor-
mation from other markers are limited and impede our ability to fully 
understand population structure and demography.

One major methodological limitation is the inability to robustly 
evaluate the power of a given dataset to discriminate among local pop-
ulations. Two main issues limit our ability to achieve this goal: (1) test 
data that are not independent from the data used to develop the clas-
sification functions from source populations (i.e., training data or base-
line data; Anderson, 2010; Waples, 2010) and (2) unbalanced sample 
sizes among the source (baseline) populations, which inherently lead 
to assigning more individuals to the source population with the larger 
sample size (Wang, 2016). For example, the program GENECLASS2 
(Piry et al., 2004), which uses jackknifing (leave-one-out) as its default 
method to assign individuals to the source populations, can upwardly 
bias assignment accuracy because the training data used in the vali-
dations are nearly identical (i.e., only differing by 1 data point, James, 
Witten, Hastie, & Tibshirani, 2013). Another widely used program, 
STRUCTURE (Pritchard, Stephens, & Donnelly, 2000), which uses a 
Bayesian approach to assign individuals to populations, also has been 
shown to provide erroneous results, if population sample sizes are un-
balanced (Puechmaille, 2016; Wang, 2016).

The other major limitation is the inability to integrate different 
marker types and efficiently process the resulting high-dimensional 
data. Several studies have described the value of integrating differ-
ent markers to better understand population structure (e.g., Bradbury, 
Campana, & Bentzen, 2008; Chabot, Hobson, Wilgenburg, McQuat, & 
Lougheed, 2012; Gómez-Díaz & González-Solís, 2007; Guillot, Renaud, 
Ledevin, Michaux, & Claude, 2012; Kelly, Ruegg, & Smith, 2005; Perrier 
et al., 2011; Smith & Campana, 2010). However, few methods exist for 
combining the various marker datasets into a single predictive model 
that can be used to classify individuals of unknown origin. As far as 
we are aware, only a small number of ecological studies (Perrier et al., 
2011; Ruegg et al., 2016; Rundel et al., 2013; Smith & Campana, 2010) 
have attempted to ascertain the source origin of individuals using inte-
grated genetic (e.g., microsatellites) and non-genetic (e.g., microchem-
istry) data. Unfortunately, the methods developed using a Bayesian 
framework to integrate data are not always reliable. For example, Smith 
and Campana (2010) found that the results of assignment success gen-
erated from integrated data were worse than when each data type was 
used independently. Thus, methods that can allow for successful inte-
gration of genetic and non-genetic marker data can still be improved.

Moreover, as genome-wide sequencing data become more easily 
obtained, methods that can reduce the dimensionality of large datasets 
(e.g., >10,000 SNPs) and allow their integration with other marker types 

are becoming increasingly important, especially when access to a high-
capacity computing cluster is lacking. While the r package ADEGENET 
(Jombart, 2008; Jombart & Ahmed, 2011) does use discriminant analy-
sis of principal components to allow for data dimensionality reduction 
in large genomic datasets (Jombart, Devillard, & Balloux, 2010), it does 
not allow one to easily integrate genetic and non-genetic data or allow 
for the separation of PCs between data types. These limitations point 
to the need for a versatile toolkit for discriminating between popula-
tions, which can integrate different data types, overcome issues as-
sociated with datasets being non-independent and unbalanced, and 
offer multiple classification methods.

The r package, assignPOP, which we describe below, fulfils these 
needs and ultimately can benefit researchers interested in understanding 
population structure and demographics. In brief, our package offers many 
novel features, including (1) a function to concatenate genetic and non-
genetic data, (2) principal component analysis (PCA) to reduce data di-
mensionality while allowing genetic and non-genetic PCs to be separated, 
(3) resampling cross-validation to estimate assignment accuracy and 
membership probability, and (4) several machine-learning classification 
algorithms to build tunable predictive models. Built-in options also allow 
users to easily manipulate the sample size of training datasets, so that 
biases associated with unbalanced population sizes (Wang, 2016) and 
self-assignment components (Anderson, 2010; Waples, 2010) can be as-
sessed and avoided. More details about the package are described below.

2  | DESCRIPTION

2.1 | Overview of analytical framework

To accurately ascertain population membership of a sample of indi-
viduals from a “mixed” population, the baseline data from the source 
populations that are used to develop classification (i.e., predictive 
assignment) functions should be free from bias. In assignPOP, these 
baseline data can consist of only genetic data, only non-genetic data, 
or a combination of genetic and non-genetic marker information. This 
information can consist of “features” that are biological or chemical in 
nature. By repeatedly creating new classification functions and subse-
quently performing assignment tests, using randomly sampled data-
sets of varying size, our resampling cross-validation procedures allow 
for the unbiased creation of training datasets that are “balanced” (i.e., 
of equal sample size) among source populations, as well as an evalua-
tion of their predictive accuracy (Figure 1).

Below, we provide a brief overview of the analytical protocol that 
assignPOP follows (all steps below refer to Figure 1), followed by a 
demonstration of some of the many options offered in the package. 
Individuals are first divided into training and test groups, with sample 
sizes defined by the user (Step 1). Next, for each training dataset, one 
or multiple user-specified subsets of training features (i.e., genotypes 
and/or non-molecular data) are reduced in dimensionality using PCA 
(Step 2), the output of which are used to build a user-chosen machine-
learning classification function (Step 3). The classification functions 
then are used to assign “test” individuals to a source population (Step 
4). This entire process can be automatically repeated as many times 
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as the user specifies, using one of two user-chosen resampling cross-
validation procedures (Step 5). It is this resampling, and the subsequent 
analysis of the descriptive statistics and data visualizations provided, 
which allows for an assessment of the reliability of the baseline data 
to accurately assign individuals to a source population. If the results of 
this evaluation are deemed satisfactory, then one can use the entire 
set of baseline data to perform a final assignment test on any unknown 
individuals from a mixed population (Step 6).

2.2 | Dataset splitting and resampling

Our assignPOP package offers two resampling, cross-validation proce-
dures, Monte-Carlo (Xu & Liang, 2001) and K-fold (Rodriguez, Perez, & 
Lozano, 2010), which are used to initially split the data into training and 
test groups (Step 1) and then test the predictive accuracy of the training 
data (Step 5). When performing Monte-Carlo cross-validation (function 
assign.MC), assignPOP allows users to determine a set of proportions (or 
fixed numbers) of individuals from each source population to be used 
in the training dataset, with the remaining individuals being allocated 
to the test dataset. By allowing for the creation of randomly selected, 
independent training and test datasets that vary in their relative size, 
but that are still balanced in size among all of the source populations, 
the user can use the descriptive statistics and visualizations provided to 
assess how training (and test) sample size bias assignment results. In this 
way, our resampling approach avoids the limitations of other programs 
used for population assignment, such as the use of non-independent 
training and test datasets (sensu Anderson, 2010) and biased inference 
due to unequal sample size among source populations (Wang, 2016).

Because the Monte-Carlo procedure samples random individu-
als each time, and hence does not guarantee that every individual is 
sampled, we included a K-fold cross-validation (function assign.kfold) 
option as an alternative resampling procedure to help estimate mem-
bership probability across individuals. When using the K-fold method, 
individuals from each population are randomly divided into K groups. 

One group from each population is used as test individuals and the re-
maining K − 1 groups are used as training individuals to build the pre-
dictive model. Then assignment tests are performed until every group 
is tested, resulting in K tests. In this way, test individuals are indepen-
dent from the training individuals, and every individual is guaranteed 
to be tested once. In the function assign.kfold, multiple K-values can be 
specified in a single analysis.

2.3 | Data importation and integration

To analyse genetic data, our package provides the function  
read.Genepop that allows users to import a GENEPOP format file 
(Rousset, 2008) into r. The function converts genetic data to a nu-
meric format, following the method used in ADEGENET (Jombart, 
2008). In this way, each allele is encoded as 0 (absent), 0.5 (heterozy-
gote) or 1 (homozygote). To analyse non-genetic data, users can save 
their tabular data in a text or comma-delimited file and import it using 
the r basic functions read.table or read.csv. In addition, users can use 
the function compile.data to integrate genetic and non-genetic data. 
Categorical data (e.g., colours) in non-genetic data are converted to 
dummy variables for further analyses. Continuous data can be stand-
ardized (M = 0 and SD = 1), if the ranges of non-genetic data vary.

2.4 | Dimensionality reduction

We use PCA to reduce dimensionality in the training dataset, which is 
useful when there are a large number of markers. The PCA is always 
conducted on molecular data and is optional for the non-molecular 
data. The loadings of selected PCs are recalculated based on the 
training data of each independent iteration and used to calculate the 
scores (coordinates) for both training and test individuals. This PCA is 
internally performed when running the function assign.MC or assign.
kfold, and by default it retains any PC that has an eigenvalue greater 
than 1 (the Kaiser-Guttman criterion; Guttman, 1954; Kaiser, 1960). 

F IGURE  1 Analytical framework 
used in assignPOP in which baseline 
data were evaluated through resampling 
cross-validation. Various combinations of 
training individuals and features can be 
used to build predictive models and test on 
test individuals. When analysing genetic 
or genomic data, data dimensionality 
is reduced using principal component 
analysis. A baseline also can be used 
to estimate assignment accuracy and 
membership probability of individuals of 
unknown origins Baseline evaluation
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individuals

Test 
individuals

All or a subset of 
training features

Predictive model built 
from training individuals 

and features

Predictive model built 
from the baseline

Step 4.
Perform 
assignment 
test on test 
individuals

Assignment 
accuracy

Sample more 
individuals or other 

features

If results 
unsatisfactory

Step 5. Resample
(Monte-Carlo/K-fold)

Unknown individuals

Assignment results

Step 6. Perform 
assignment test on 
unknown individuals

Unknown individual prediction

(Dimensionality reduction)

Step 1. Divide individuals into 
training and test groups

Step 2. Determine training 
features to be used

Step 3. Use a user-chosen 
classification function



442  |    Methods in Ecology and Evolu
on CHEN et al.

However, the user can specify the number of PCs retained to fine 
tune and build predictive models in the function’s argument.

2.5 | Classification models

The user can choose from five different classification machine-
learning functions to build the predictive models (Step 3). These 
models are subsequently used to estimate membership probabili-
ties of test individuals and assign individuals to a source popula-
tion (determined by the greatest probability), both while evaluating 
the baseline data (Step 4) and conducting the assignment for un-
known individuals (Step 6). The classification models include lin-
ear discriminant analysis from the package MASS (Ripley et al., 
2016), support vector machines and naïve Bayes from the package 
e1071 (Meyer et al., 2015), decision tree from package tree (Ripley, 
2016) and random forest from the package randomForest (Cutler & 
Wiener, 2015).

2.6 | Data visualization

After the resampling cross-validation is completed, the user can 
calculate assignment accuracies with the function accuracy.MC and 
accuracy.kfold for results generated from assign.MC and assign.kfold, 
respectively. The predicted population of a test individual is deter-
mined by the highest membership probability, and if the predicted 
and original populations are identical, it is considered a correctly as-
signed individual. The assignment accuracies across the tests can be 
visualized in a box plot using the function accuracy.plot, whereas the 
results of membership probability can be visualized in a stacked-bar 
plot using the function membership.plot.

While the functions assign.MC and assign.kfold are used to conduct 
assignment during the baseline data evaluation phase (Step 1–5), the 

function assign.X is used to perform a one-time, final assignment test for 
the unknown individuals from a mixed population (Step 6), assuming the 
user is satisfied with the reliability of the baseline data for classification 
and assignment. The function assign.X provides the predicted source 
population of each individual and its posterior probability of member-
ship to that population, as well as the others. All of these data are saved 
in text files, which can then be subsequently analysed, if so desired.

2.7 | Informative loci calling

Researchers may want to learn which genetic markers are most in-
formative in the assignment tests, as this may allow them to design 
a set of targeted primers for fewer but more informative loci, thus 
saving time and money in genotyping. Our assignPOP offers this capa-
bility through the function check.loci. This function counts the occur-
rence of loci used in each of the Monte-Carlo and/or K-fold training 
datasets, and hence is useful when resampling subsets of high-FST loci 
as training loci. Because the FST value of a locus will likely vary when 
different individuals are sampled as training individuals, a locus that 
shows consistent high-FST values across the suite of training datasets 
is likely to be considered highly informative. The results of informative 
loci are shown in a table in which loci are ranked by the FST value in 
columns, and sorted by frequency in rows (an example can be found 
in our package tutorial website).

3  | EXAMPLES

Below, we provide hypothetical examples to demonstrate how baseline 
data are evaluated using a genetic dataset (1,000 SNP loci simulated by 
SIMCOAL2.0 (Laval & Excoffier, 2004)) and how assignment results can 
be improved by integrating the genetic and non-genetic datasets (four 

F IGURE  2 Assignment accuracies 
estimated via Monte–Carlo cross-validation 
and support vector machine methods, with 
sampling of three subsets of high-FST loci 
(top 10%, orange; top 25%, green; top 
50%, blue) plus all loci (purple) crossed by 
three levels of training individuals, with 
30 iterations. Box plot details: the line 
within the box is the median; top and 
bottom edges of the box are 25th and 75th 
percentiles; the ends of whiskers are the 
minimum and maximum of non-outliers, 
and outliers are shown as black circles. 
Horizontal red lines indicate the null 
population assignment rate, which was 
33%
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morphometric measurements) for three populations (A, B and C) of 30 in-
dividuals. In this simulated dataset, populations A and B have less genetic 
variation but have some degree of morphometric variation, whereas 
population C is both genetically and phenotypically different from the 
populations A and B. As such, we expect that genetic markers alone can 
be used to discriminate between groups A/B and C, but not between 
A and B, whereas the integrated markers can be used to discriminate 
among the three populations. The analytical workflow is as follows.

I. Import the library and genetic data

II. Remove low variance loci (optional). This step reduces the num-
ber of loci that have low variance across all individuals, and therefore 
could save computing time for further analyses, particularly when an-
alysing large genomic data.

III. Perform Monte–Carlo cross-validation. The following script 
samples 50%, 70% and 90% of individuals from each population by 
the top 10%, 25%, 50% of high FST and all loci as training sets, and 
each training set combination is resampled 30 times. As a result, it 
performs a total of 360 assignment tests. In this example, support 
vector machine (model = “svm”) classification model is used to build 
predictive models, and assignment results are saved under the folder 
named “Result-folder.”

IV. Calculate assignment accuracy of the Monte–Carlo cross-
validation results. This step generates a dataset that includes assign-
ment accuracies for each population across the tests, which can then 
be used to create assignment accuracy plots.

V. Create an assignment accuracy box plot (Figure 2). The func-
tion accuracy.plot is used to create the plot. It is built with the ggplot2 
library (Wickham, 2016) so that the user can incorporate other 
ggplot2 functions to modify the plot, as in the example script shown 
below.

VI. Perform K-fold cross-validation. The following script divides 
individuals from each population into 3, 4 or 5 groups and ran-
domly samples 10%, 25% or 50% of loci or uses all loci as training 
data, resulting in a total of 48 assignment tests. In this example, 
linear discriminant function analysis (model = “lda”) is used to build 

library(assignPOP)

YourGenepop <- read.Genepop( "simGenepop.txt", pop.names = c("pop_A","pop_B",
"pop_C"), haploid = FALSE)

#Download “simGenepop.txt” at https://goo.gl/ncDV2x

YourGenepopRd <- reduce.allele( YourGenepop, p = 0.95)

# p = 0.95 indicates the removal of loci having the frequency of an allele 
greater than 0.95.

assign.MC( YourGenepopRd, dir="Result-folder/", train.inds=c(0.5,0.7,0.9), 
train.loci=c(0.1,0.25,0.5,1), loci.sample="fst", iterations=30,
model="svm" )

accuMC <- accuracy.MC( dir = "Result-folder/" )

library(ggplot2)

accuracy.plot( accuMC, pop=c("all", "pop_A", "pop_B", "pop_C")) +

ylim(0, 1) + #Set y limit between 0 and 1

annotate("segment",x=0.4,xend=3.6,y=0.33,yend=0.33,colour="red",size=1) +
#Add a red horizontal line at y = 0.33 (null assignment rate for 3 population
s)

ggtitle("Monte-Carlo cross-validation using genetic loci")+
#Add a plot title

theme(plot.title = element_text(size=20, face="bold"))
#Edit plot title text size

F IGURE  3 Membership probability of three hypothetical populations. Probabilities of individuals were estimated using 3-fold cross-
validation and all loci (1,000 SNPs)
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predictive models, and assignment results are saved under the folder 
named “Result-folder2.” The results are used to create membership  
probability plots.

VII. Create a membership probability plot (Figure 3). After entering 
the following script, the user is prompted to specify which assignment 
results (K groups and training loci) and styles should be used to create 
the plot. Here, we created the plot using the results from K = 3 and all 
loci in the training data.

assign.kfold( YourGenepopRd, k.fold=c(3,4,5), train.loci=c(0.1,0.25,0.5,1), 

loci.sample="random", dir="Result-folder2/", model="lda" )

F IGURE  4 Assignment accuracies 
estimated via Monte–Carlo cross-validation 
and support vector machine methods, 
with random sampling of three levels of 
training individuals crossed by four levels 
of training loci (each box cluster from left 
to right: 10%, 25%, 50%, all) plus four 
morphometric measurements crossed by 
30 iterations. See Figure 2 for box plot 
description details

F IGURE  5 Membership probability of three hypothetical populations. Probabilities of individuals were estimated using 3-fold cross-
validation and 1,000 SNPs plus four morphometric measurements
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VIII. Concatenate genetic and morphometric data. The script 
below concatenates genetic (YourGenepopRd) and non-genetic (mor-
phData.csv) data into a new integrated dataset that can be used to 
perform the baseline evaluation.

The object (YourIntegrateData) can be further analysed using 
the same analytical workflow (see Steps III–VII) to create the 
plots of assignment accuracy (Figure 4) and membership prob-
ability (Figure 5). Compared with the results from using genetic 
data alone, the integrated dataset resulted in higher assignment 
accuracies in both populations A and B (Figure 4). Also, more indi-
viduals were correctly assigned to populations A and B (Figure 5). 
As expected, the overall assignment results were improved by 
integrating genetic and morphometric data. It is worth noting that 
mean assignment accuracy increased with increasing proportion of 
the data used in the training set, with the variance also increas-
ing in some instances (see populations A and B in Figure 5). These 
results suggest that assignment accuracy could become upwardly 
biased when the proportion of individuals used as training data is 
too large (e.g., leave-one-out cross-validation approach). Lastly, 
after baseline data are evaluated and the results are deemed 
satisfactory, users can perform an assignment test on a mixture 
of individuals from unknown origins using the function assign.X. 
Example codes and datasets used here can be found on our tutorial 
website (http://alexkychen.github.io/assignPOP).

4  | CONCLUSIONS

Herein, we described the first release of assignPOP, which includes 
several novel features to perform population assignment using the 
concept and methods of machine learning. It is a versatile r package 
in that it allows both genetic and non-genetic data to be integrated. In 
turn, researchers can compare assignment results generated from the 
different data types, thus enabling them to more easily identify useful 
markers for population discrimination than existing tools. We show 
that this determination is important because, if population-specific 
features exist in these different data types, their integration can im-
prove overall population assignment results. Moreover, assignPOP’s 
ability to resample various combinations of training data and per-
form independent cross-validation tests can help researchers evalu-
ate whether a baseline dataset has sufficient discriminatory power to 
predict the source population(s) of individuals while simultaneously 
preventing the predictive models from overfitting. By facilitating 
the ability of users to explore population structure, identify markers 
that can best discriminate among populations, and then use these 
population-specific markers to determine the source origin(s) of indi-
viduals from a “mixed” population, assignPOP is likely to benefit both 
species conservation and management.
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