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Abstract
1.	 The	use	of	biomarkers	(e.g.,	genetic,	microchemical	and	morphometric	characteris-
tics)	to	discriminate	among	and	assign	individuals	to	a	population	can	benefit	spe-
cies	 conservation	 and	 management	 by	 facilitating	 our	 ability	 to	 understand	
population	structure	and	demography.

2.	 Tools	that	can	evaluate	the	reliability	of	large	genomic	datasets	for	population	dis-
crimination	 and	 assignment,	 as	 well	 as	 allow	 their	 integration	 with	 non-genetic	
markers	for	the	same	purpose,	are	lacking.	Our	r	package,	assignPOP,	provides	both	
functions	in	a	supervised	machine-learning	framework.

3. assignPOP	 uses	Monte-Carlo	 and	K-fold	 cross-validation	 procedures,	 as	 well	 as	
principal	 component	 analysis,	 to	 estimate	 assignment	 accuracy	 and	membership	
probabilities,	using	training	 (i.e.,	baseline	source	population)	and	test	 (i.e.,	valida-
tion)	datasets	 that	are	 independent.	A	user	 then	can	build	a	specified	predictive	
model	based	on	the	relative	sizes	of	these	datasets	and	classification	functions,	in-
cluding	linear	discriminant	analysis,	support	vector	machine,	naïve	Bayes,	decision	
tree	and	random	forest.

4. assignPOP	can	benefit	any	researcher	who	seeks	to	use	genetic	or	non-genetic	data	
to	infer	population	structure	and	membership	of	individuals.	assignPOP	is	a	freely	
available r	package	under	the	GPL	license,	and	can	be	downloaded	from	CRAN	or	
at	 https://github.com/alexkychen/assignPOP.	A	 comprehensive	 tutorial	 can	 also	
be	found	at	https://alexkychen.github.io/assignPOP/.
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1  | INTRODUCTION

The	ability	to	discriminate	among	resident	and	immigrant	individuals	in	
local	populations	and	then	identify	the	source	populations	from	which	
immigrants	originated	can	facilitate	species	conservation	and	manage-
ment	(Manel,	Gaggiotti,	&	Waples,	2005).	Numerous	types	of	data	have	

been	applied	 towards	 this	goal	 (reviews	 in	Begg	&	Waldman,	1999;	
Cadrin,	 Kerr,	 &	Mariani,	 2013;	 Hobson,	 1999;	Waples	 &	 Gaggiotti,	
2006).	Most	 prominent	 across	 all	 taxa	 has	 been	 the	 use	 of	 genetic	
markers	 (e.g.,	microsatellites,	SNPs);	however,	other	data	types	have	
also	been	used,	 including	artificial	 tags	and	various	 types	of	natural	
tags	such	as	morphological	traits	(Cadrin,	2000),	parasites	(Mackenzie,	
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2002),	 fatty	 acid	 composition	 (Czesny,	Dabrowski,	 Christensen,	Van	
Eenennaam,	&	Doroshov,	2000),	and	elemental	or	 isotopic	composi-
tion	of	 fish	otoliths	 (Campana,	Fowler,	&	Jones,	1994),	bird	feathers	
(Clegg,	Kelly,	Kimura,	&	Smith,	2003)	and	invertebrate	shells	(Becker,	
Levin,	Fodrie,	&	McMillan,	2007).	While	the	use	of	genetic	markers	has	
improved	our	ability	 to	understand	population-	level	phenomena,	 in-
cluding	life-	history	variation	(Gibbs	et	al.,	1990;	Koehler,	Pearce,	Flint,	
Franson,	&	Ip,	2008;	Ross,	2001)	and	population	dynamics	(Hardesty,	
Hubbell,	&	Bermingham,	2006;	Hellberg,	Burton,	Neigel,	&	Palumbi,	
2002),	current	methods	used	for	 integrating	genetic	data	with	infor-
mation	from	other	markers	are	limited	and	impede	our	ability	to	fully	
understand	population	structure	and	demography.

One	 major	 methodological	 limitation	 is	 the	 inability	 to	 robustly	
evaluate	the	power	of	a	given	dataset	to	discriminate	among	local	pop-
ulations.	Two	main	issues	limit	our	ability	to	achieve	this	goal:	(1)	test	
data	that	are	not	independent	from	the	data	used	to	develop	the	clas-
sification	functions	from	source	populations	(i.e.,	training	data	or	base-
line	data;	Anderson,	2010;	Waples,	2010)	and	(2)	unbalanced	sample	
sizes	among	the	source	(baseline)	populations,	which	inherently	lead	
to	assigning	more	individuals	to	the	source	population	with	the	larger	
sample	 size	 (Wang,	 2016).	 For	 example,	 the	 program	GENECLASS2	
(Piry	et	al.,	2004),	which	uses	jackknifing	(leave-	one-	out)	as	its	default	
method	to	assign	individuals	to	the	source	populations,	can	upwardly	
bias	assignment	accuracy	because	the	training	data	used	in	the	vali-
dations	are	nearly	identical	(i.e.,	only	differing	by	1	data	point,	James,	
Witten,	 Hastie,	 &	 Tibshirani,	 2013).	 Another	 widely	 used	 program,	
STRUCTURE	 (Pritchard,	 Stephens,	&	Donnelly,	 2000),	which	 uses	 a	
Bayesian	approach	to	assign	individuals	to	populations,	also	has	been	
shown	to	provide	erroneous	results,	if	population	sample	sizes	are	un-
balanced	(Puechmaille,	2016;	Wang,	2016).

The	 other	 major	 limitation	 is	 the	 inability	 to	 integrate	 different	
marker	 types	 and	 efficiently	 process	 the	 resulting	 high-	dimensional	
data.	 Several	 studies	 have	 described	 the	 value	 of	 integrating	 differ-
ent	markers	to	better	understand	population	structure	(e.g.,	Bradbury,	
Campana,	&	Bentzen,	2008;	Chabot,	Hobson,	Wilgenburg,	McQuat,	&	
Lougheed,	2012;	Gómez-	Díaz	&	González-	Solís,	2007;	Guillot,	Renaud,	
Ledevin,	Michaux,	&	Claude,	2012;	Kelly,	Ruegg,	&	Smith,	2005;	Perrier	
et	al.,	2011;	Smith	&	Campana,	2010).	However,	few	methods	exist	for	
combining	the	various	marker	datasets	 into	a	single	predictive	model	
that	 can	be	used	 to	 classify	 individuals	of	unknown	origin.	As	 far	 as	
we	are	aware,	only	a	small	number	of	ecological	studies	(Perrier	et	al.,	
2011;	Ruegg	et	al.,	2016;	Rundel	et	al.,	2013;	Smith	&	Campana,	2010)	
have	attempted	to	ascertain	the	source	origin	of	individuals	using	inte-
grated	genetic	(e.g.,	microsatellites)	and	non-	genetic	(e.g.,	microchem-
istry)	 data.	 Unfortunately,	 the	 methods	 developed	 using	 a	 Bayesian	
framework	to	integrate	data	are	not	always	reliable.	For	example,	Smith	
and	Campana	(2010)	found	that	the	results	of	assignment	success	gen-
erated	from	integrated	data	were	worse	than	when	each	data	type	was	
used	independently.	Thus,	methods	that	can	allow	for	successful	inte-
gration	of	genetic	and	non-	genetic	marker	data	can	still	be	improved.

Moreover,	as	genome-	wide	sequencing	data	become	more	easily	
obtained,	methods	that	can	reduce	the	dimensionality	of	large	datasets	
(e.g.,	>10,000	SNPs)	and	allow	their	integration	with	other	marker	types	

are	becoming	increasingly	important,	especially	when	access	to	a	high-	
capacity	computing	cluster	is	lacking.	While	the	r	package	ADEGENET	
(Jombart,	2008;	Jombart	&	Ahmed,	2011)	does	use	discriminant	analy-
sis	of	principal	components	to	allow	for	data	dimensionality	reduction	
in	large	genomic	datasets	(Jombart,	Devillard,	&	Balloux,	2010),	it	does	
not	allow	one	to	easily	integrate	genetic	and	non-	genetic	data	or	allow	
for	the	separation	of	PCs	between	data	types.	These	limitations	point	
to	the	need	for	a	versatile	toolkit	for	discriminating	between	popula-
tions,	which	can	 integrate	different	data	 types,	overcome	 issues	as-
sociated	with	datasets	being	non-	independent	and	unbalanced,	 and	
offer	multiple	classification	methods.

The	 r	 package,	 assignPOP,	 which	 we	 describe	 below,	 fulfils	 these	
needs	and	ultimately	can	benefit	researchers	interested	in	understanding	
population	structure	and	demographics.	In	brief,	our	package	offers	many	
novel	features,	including	(1)	a	function	to	concatenate	genetic	and	non-	
genetic	data,	 (2)	principal	component	analysis	 (PCA)	to	reduce	data	di-
mensionality	while	allowing	genetic	and	non-	genetic	PCs	to	be	separated,	
(3)	 resampling	 cross-	validation	 to	 estimate	 assignment	 accuracy	 and	
membership	 probability,	 and	 (4)	 several	machine-	learning	 classification	
algorithms	to	build	tunable	predictive	models.	Built-	in	options	also	allow	
users	 to	easily	manipulate	 the	sample	size	of	 training	datasets,	 so	 that	
biases	 associated	with	 unbalanced	 population	 sizes	 (Wang,	 2016)	 and	
self-	assignment	components	(Anderson,	2010;	Waples,	2010)	can	be	as-
sessed	and	avoided.	More	details	about	the	package	are	described	below.

2  | DESCRIPTION

2.1 | Overview of analytical framework

To	accurately	ascertain	population	membership	of	a	sample	of	 indi-
viduals	from	a	“mixed”	population,	the	baseline	data	from	the	source	
populations	 that	 are	 used	 to	 develop	 classification	 (i.e.,	 predictive	
assignment)	 functions	should	be	 free	 from	bias.	 In	assignPOP,	 these	
baseline	data	can	consist	of	only	genetic	data,	only	non-	genetic	data,	
or	a	combination	of	genetic	and	non-	genetic	marker	information.	This	
information	can	consist	of	“features”	that	are	biological	or	chemical	in	
nature.	By	repeatedly	creating	new	classification	functions	and	subse-
quently	performing	assignment	 tests,	using	randomly	sampled	data-
sets	of	varying	size,	our	resampling	cross-	validation	procedures	allow	
for	the	unbiased	creation	of	training	datasets	that	are	“balanced”	(i.e.,	
of	equal	sample	size)	among	source	populations,	as	well	as	an	evalua-
tion	of	their	predictive	accuracy	(Figure	1).

Below,	we	provide	a	brief	overview	of	the	analytical	protocol	that	
assignPOP	 follows	 (all	 steps	 below	 refer	 to	 Figure	1),	 followed	 by	 a	
demonstration	of	some	of	the	many	options	offered	 in	the	package.	
Individuals	are	first	divided	into	training	and	test	groups,	with	sample	
sizes	defined	by	the	user	(Step	1).	Next,	for	each	training	dataset,	one	
or	multiple	user-	specified	subsets	of	training	features	(i.e.,	genotypes	
and/or	non-	molecular	data)	are	reduced	in	dimensionality	using	PCA	
(Step	2),	the	output	of	which	are	used	to	build	a	user-	chosen	machine-	
learning	 classification	 function	 (Step	 3).	 The	 classification	 functions	
then	are	used	to	assign	“test”	individuals	to	a	source	population	(Step	
4).	This	entire	process	can	be	automatically	 repeated	as	many	times	
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as	the	user	specifies,	using	one	of	two	user-	chosen	resampling	cross-	
validation	procedures	(Step	5).	It	is	this	resampling,	and	the	subsequent	
analysis	of	the	descriptive	statistics	and	data	visualizations	provided,	
which	allows	for	an	assessment	of	the	reliability	of	the	baseline	data	
to	accurately	assign	individuals	to	a	source	population.	If	the	results	of	
this	evaluation	are	deemed	satisfactory,	then	one	can	use	the	entire	
set	of	baseline	data	to	perform	a	final	assignment	test	on	any	unknown	
individuals	from	a	mixed	population	(Step	6).

2.2 | Dataset splitting and resampling

Our assignPOP	package	offers	two	resampling,	cross-	validation	proce-
dures,	Monte-	Carlo	(Xu	&	Liang,	2001)	and	K-	fold	(Rodriguez,	Perez,	&	
Lozano,	2010),	which	are	used	to	initially	split	the	data	into	training	and	
test	groups	(Step	1)	and	then	test	the	predictive	accuracy	of	the	training	
data	(Step	5).	When	performing	Monte-	Carlo	cross-	validation	(function	
assign.MC),	assignPOP	allows	users	to	determine	a	set	of	proportions	(or	
fixed	numbers)	of	individuals	from	each	source	population	to	be	used	
in	 the	 training	dataset,	with	 the	 remaining	 individuals	being	allocated	
to	the	test	dataset.	By	allowing	for	the	creation	of	randomly	selected,	
independent	 training	and	test	datasets	 that	vary	 in	 their	 relative	size,	
but	that	are	still	balanced	in	size	among	all	of	the	source	populations,	
the	user	can	use	the	descriptive	statistics	and	visualizations	provided	to	
assess	how	training	(and	test)	sample	size	bias	assignment	results.	In	this	
way,	our	resampling	approach	avoids	the	limitations	of	other	programs	
used	 for	population	assignment,	 such	as	 the	use	of	non-	independent	
training	and	test	datasets	(sensu	Anderson,	2010)	and	biased	inference	
due	to	unequal	sample	size	among	source	populations	(Wang,	2016).

Because	 the	 Monte-	Carlo	 procedure	 samples	 random	 individu-
als	each	time,	and	hence	does	not	guarantee	that	every	individual	 is	
sampled,	we	included	a	K-	fold	cross-	validation	(function	assign.kfold)	
option	as	an	alternative	resampling	procedure	to	help	estimate	mem-
bership	probability	across	individuals.	When	using	the	K-	fold	method,	
individuals	from	each	population	are	randomly	divided	into	K	groups.	

One	group	from	each	population	is	used	as	test	individuals	and	the	re-
maining	K	−	1	groups	are	used	as	training	individuals	to	build	the	pre-
dictive	model.	Then	assignment	tests	are	performed	until	every	group	
is	tested,	resulting	in	K	tests.	In	this	way,	test	individuals	are	indepen-
dent	from	the	training	individuals,	and	every	individual	is	guaranteed	
to	be	tested	once.	In	the	function	assign.kfold,	multiple	K-	values	can	be	
specified	in	a	single	analysis.

2.3 | Data importation and integration

To	 analyse	 genetic	 data,	 our	 package	 provides	 the	 function	 
read.Genepop	 that	 allows	 users	 to	 import	 a	 GENEPOP	 format	 file	
(Rousset,	2008)	 into	r.	 The	 function	converts	genetic	data	 to	a	nu-
meric	 format,	 following	 the	 method	 used	 in	 ADEGENET	 (Jombart,	
2008).	In	this	way,	each	allele	is	encoded	as	0	(absent),	0.5	(heterozy-
gote)	or	1	(homozygote).	To	analyse	non-	genetic	data,	users	can	save	
their	tabular	data	in	a	text	or	comma-	delimited	file	and	import	it	using	
the	r	basic	functions	read.table or read.csv.	In	addition,	users	can	use	
the	function	compile.data	 to	 integrate	genetic	and	non-	genetic	data.	
Categorical	data	 (e.g.,	colours)	 in	non-	genetic	data	are	converted	to	
dummy	variables	for	further	analyses.	Continuous	data	can	be	stand-
ardized	(M = 0 and SD	=	1),	if	the	ranges	of	non-	genetic	data	vary.

2.4 | Dimensionality reduction

We	use	PCA	to	reduce	dimensionality	in	the	training	dataset,	which	is	
useful	when	there	are	a	large	number	of	markers.	The	PCA	is	always	
conducted	on	molecular	data	and	is	optional	for	the	non-	molecular	
data.	 The	 loadings	 of	 selected	 PCs	 are	 recalculated	 based	 on	 the	
training	data	of	each	independent	iteration	and	used	to	calculate	the	
scores	(coordinates)	for	both	training	and	test	individuals.	This	PCA	is	
internally	performed	when	running	the	function	assign.MC or assign.
kfold,	and	by	default	it	retains	any	PC	that	has	an	eigenvalue	greater	
than	1	(the	Kaiser-	Guttman	criterion;	Guttman,	1954;	Kaiser,	1960).	

F IGURE  1 Analytical	framework	
used	in	assignPOP	in	which	baseline	
data	were	evaluated	through	resampling	
cross-	validation.	Various	combinations	of	
training	individuals	and	features	can	be	
used	to	build	predictive	models	and	test	on	
test	individuals.	When	analysing	genetic	
or	genomic	data,	data	dimensionality	
is	reduced	using	principal	component	
analysis.	A	baseline	also	can	be	used	
to	estimate	assignment	accuracy	and	
membership	probability	of	individuals	of	
unknown	origins Baseline evaluation
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However,	 the	user	can	specify	 the	number	of	PCs	 retained	 to	 fine	
tune	and	build	predictive	models	in	the	function’s	argument.

2.5 | Classification models

The	 user	 can	 choose	 from	 five	 different	 classification	 machine-	
learning	 functions	 to	 build	 the	 predictive	models	 (Step	 3).	 These	
models	are	 subsequently	used	 to	estimate	membership	probabili-
ties	 of	 test	 individuals	 and	 assign	 individuals	 to	 a	 source	popula-
tion	(determined	by	the	greatest	probability),	both	while	evaluating	
the	baseline	data	 (Step	4)	and	conducting	 the	assignment	 for	un-
known	 individuals	 (Step	 6).	 The	 classification	models	 include	 lin-
ear	 discriminant	 analysis	 from	 the	 package	 MASS	 (Ripley	 et	al.,	
2016),	support	vector	machines	and	naïve	Bayes	from	the	package	
e1071	(Meyer	et	al.,	2015),	decision	tree	from	package	tree	(Ripley,	
2016)	and	random	forest	from	the	package	randomForest	(Cutler	&	
Wiener,	2015).

2.6 | Data visualization

After	 the	 resampling	 cross-	validation	 is	 completed,	 the	 user	 can	
	calculate	 assignment	 accuracies	with	 the	 function	 accuracy.MC and 
accuracy.kfold	 for	 results	generated	 from	assign.MC and assign.kfold,	
respectively.	 The	 predicted	 population	 of	 a	 test	 individual	 is	 deter-
mined	 by	 the	 highest	membership	 probability,	 and	 if	 the	 predicted	
and	original	populations	are	identical,	it	is	considered	a	correctly	as-
signed	individual.	The	assignment	accuracies	across	the	tests	can	be	
visualized	in	a	box	plot	using	the	function	accuracy.plot,	whereas	the	
results	of	membership	probability	can	be	visualized	in	a	stacked-	bar	
plot	using	the	function	membership.plot.

While	the	functions	assign.MC and assign.kfold	are	used	to	conduct	
assignment	during	the	baseline	data	evaluation	phase	 (Step	1–5),	 the	

function	assign.X	is	used	to	perform	a	one-	time,	final	assignment	test	for	
the	unknown	individuals	from	a	mixed	population	(Step	6),	assuming	the	
user	is	satisfied	with	the	reliability	of	the	baseline	data	for	classification	
and	 assignment.	The	 function	assign.X	 provides	 the	 predicted	 source	
population	of	each	individual	and	its	posterior	probability	of	member-
ship	to	that	population,	as	well	as	the	others.	All	of	these	data	are	saved	
in	text	files,	which	can	then	be	subsequently	analysed,	if	so	desired.

2.7 | Informative loci calling

Researchers	may	want	 to	 learn	which	genetic	markers	are	most	 in-
formative	 in	the	assignment	tests,	as	this	may	allow	them	to	design	
a	 set	 of	 targeted	primers	 for	 fewer	but	more	 informative	 loci,	 thus	
saving	time	and	money	in	genotyping.	Our	assignPOP	offers	this	capa-
bility	through	the	function	check.loci.	This	function	counts	the	occur-
rence	of	loci	used	in	each	of	the	Monte-	Carlo	and/or	K-	fold	training	
datasets,	and	hence	is	useful	when	resampling	subsets	of	high-	FST loci 
as	training	loci.	Because	the	FST	value	of	a	locus	will	likely	vary	when	
different	 individuals	are	sampled	as	training	 individuals,	a	 locus	that	
shows	consistent	high-	FST	values	across	the	suite	of	training	datasets	
is	likely	to	be	considered	highly	informative.	The	results	of	informative	
loci	are	shown	in	a	table	in	which	loci	are	ranked	by	the	FST value in 
columns,	and	sorted	by	frequency	in	rows	(an	example	can	be	found	
in	our	package	tutorial	website).

3  | EXAMPLES

Below,	we	provide	hypothetical	examples	to	demonstrate	how	baseline	
data	are	evaluated	using	a	genetic	dataset	(1,000	SNP	loci	simulated	by	
SIMCOAL2.0	(Laval	&	Excoffier,	2004))	and	how	assignment	results	can	
be	improved	by	integrating	the	genetic	and	non-	genetic	datasets	(four	

F IGURE  2 Assignment	accuracies	
estimated	via	Monte–Carlo	cross-	validation	
and	support	vector	machine	methods,	with	
sampling	of	three	subsets	of	high-	FST loci 
(top	10%,	orange;	top	25%,	green;	top	
50%,	blue)	plus	all	loci	(purple)	crossed	by	
three	levels	of	training	individuals,	with	
30	iterations.	Box	plot	details:	the	line	
within	the	box	is	the	median;	top	and	
bottom	edges	of	the	box	are	25th	and	75th	
percentiles;	the	ends	of	whiskers	are	the	
minimum	and	maximum	of	non-	outliers,	
and	outliers	are	shown	as	black	circles.	
Horizontal	red	lines	indicate	the	null	
population	assignment	rate,	which	was	
33%
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morphometric	measurements)	for	three	populations	(A,	B	and	C)	of	30	in-
dividuals.	In	this	simulated	dataset,	populations	A	and	B	have	less	genetic	
variation	 but	 have	 some	 degree	 of	 morphometric	 variation,	 whereas	
population	C	 is	both	genetically	and	phenotypically	different	 from	the	
populations	A	and	B.	As	such,	we	expect	that	genetic	markers	alone	can	
be	used	to	discriminate	between	groups	A/B	and	C,	but	not	between	
A	and	B,	whereas	 the	 integrated	markers	can	be	used	 to	discriminate	
among	the	three	populations.	The	analytical	workflow	is	as	follows.

I.	Import	the	library	and	genetic	data

II.	Remove	low	variance	loci	(optional).	This	step	reduces	the	num-
ber	of	loci	that	have	low	variance	across	all	individuals,	and	therefore	
could	save	computing	time	for	further	analyses,	particularly	when	an-
alysing	large	genomic	data.

III.	 Perform	 Monte–Carlo	 cross-	validation.	 The	 following	 script	
samples	50%,	70%	and	90%	of	 individuals	 from	each	population	by	
the	top	10%,	25%,	50%	of	high	FST	and	all	 loci	as	 training	sets,	and	
each	 training	 set	 combination	 is	 resampled	 30	 times.	As	 a	 result,	 it	
performs	 a	 total	 of	 360	 assignment	 tests.	 In	 this	 example,	 support	
vector	machine	 (model	=	“svm”)	classification	model	 is	used	 to	build	
predictive	models,	and	assignment	results	are	saved	under	the	folder	
named	“Result-	folder.”

IV.	 Calculate	 assignment	 accuracy	 of	 the	 Monte–Carlo	 cross-	
validation	results.	This	step	generates	a	dataset	that	includes	assign-
ment	accuracies	for	each	population	across	the	tests,	which	can	then	
be	used	to	create	assignment	accuracy	plots.

V.	Create	an	assignment	accuracy	box	plot	(Figure	2).	The	func-
tion	accuracy.plot	is	used	to	create	the	plot.	It	is	built	with	the		ggplot2 
library	 (Wickham,	 2016)	 so	 that	 the	 user	 can	 incorporate	 other	
 ggplot2	functions	to	modify	the	plot,	as	in	the	example	script	shown	
below.

VI.	Perform	K-	fold	cross-	validation.	The	following	script	divides	
individuals	 from	 each	 population	 into	 3,	 4	 or	 5	 groups	 and	 ran-
domly	samples	10%,	25%	or	50%	of	loci	or	uses	all	 loci	as	training	
data,	 resulting	 in	 a	 total	 of	 48	 assignment	 tests.	 In	 this	 example,	
linear	discriminant	function	analysis	(model	=	“lda”)	is	used	to	build	

library(assignPOP)

YourGenepop <- read.Genepop( "simGenepop.txt", pop.names = c("pop_A","pop_B",
"pop_C"), haploid = FALSE)

#Download “simGenepop.txt” at https://goo.gl/ncDV2x

YourGenepopRd <- reduce.allele( YourGenepop, p = 0.95)

# p = 0.95 indicates the removal of loci having the frequency of an allele 
greater than 0.95.

assign.MC( YourGenepopRd, dir="Result-folder/", train.inds=c(0.5,0.7,0.9), 
train.loci=c(0.1,0.25,0.5,1), loci.sample="fst", iterations=30,
model="svm" )

accuMC <- accuracy.MC( dir = "Result-folder/" )

library(ggplot2)

accuracy.plot( accuMC, pop=c("all", "pop_A", "pop_B", "pop_C")) +

ylim(0, 1) + #Set y limit between 0 and 1

annotate("segment",x=0.4,xend=3.6,y=0.33,yend=0.33,colour="red",size=1) +
#Add a red horizontal line at y = 0.33 (null assignment rate for 3 population
s)

ggtitle("Monte-Carlo cross-validation using genetic loci")+
#Add a plot title

theme(plot.title = element_text(size=20, face="bold"))
#Edit plot title text size

F IGURE  3 Membership	probability	of	three	hypothetical	populations.	Probabilities	of	individuals	were	estimated	using	3-	fold	cross-	
validation	and	all	loci	(1,000	SNPs)
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predictive	models,	and	assignment	results	are	saved	under	the	folder	
named	“Result-	folder2.”	The	results	are	used	to	create	membership	 
probability	plots.

VII.	Create	a	membership	probability	plot	(Figure	3).	After	entering	
the	following	script,	the	user	is	prompted	to	specify	which	assignment	
results	(K	groups	and	training	loci)	and	styles	should	be	used	to	create	
the	plot.	Here,	we	created	the	plot	using	the	results	from	K = 3 and all 
loci	in	the	training	data.

assign.kfold( YourGenepopRd, k.fold=c(3,4,5), train.loci=c(0.1,0.25,0.5,1), 

loci.sample="random", dir="Result-folder2/", model="lda" )

F IGURE  4 Assignment	accuracies	
estimated	via	Monte–Carlo	cross-	validation	
and	support	vector	machine	methods,	
with	random	sampling	of	three	levels	of	
training	individuals	crossed	by	four	levels	
of	training	loci	(each	box	cluster	from	left	
to	right:	10%,	25%,	50%,	all)	plus	four	
morphometric	measurements	crossed	by	
30	iterations.	See	Figure	2	for	box	plot	
description	details

F IGURE  5 Membership	probability	of	three	hypothetical	populations.	Probabilities	of	individuals	were	estimated	using	3-	fold	cross-	
validation	and	1,000	SNPs	plus	four	morphometric	measurements
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VIII.	 Concatenate	 genetic	 and	 morphometric	 data.	 The	 script	
below	concatenates	genetic	(YourGenepopRd)	and	non-	genetic	(mor-
phData.csv)	data	 into	a	new	 integrated	dataset	 that	 can	be	used	 to	
perform	the	baseline	evaluation.

The	 object	 (YourIntegrateData)	 can	 be	 further	 analysed	 using	
the	 same	 analytical	 workflow	 (see	 Steps	 III–VII)	 to	 create	 the	
plots	 of	 assignment	 accuracy	 (Figure	4)	 and	 membership	 prob-
ability	 (Figure	5).	 Compared	 with	 the	 results	 from	 using	 genetic	
data	 alone,	 the	 integrated	 dataset	 resulted	 in	 higher	 assignment	
accuracies	in	both	populations	A	and	B	(Figure	4).	Also,	more	indi-
viduals	were	correctly	assigned	to	populations	A	and	B	(Figure	5).	
As	 expected,	 the	 overall	 assignment	 results	 were	 improved	 by	
	integrating	genetic	and	morphometric	data.	It	is	worth	noting	that	
mean	assignment	accuracy	increased	with	increasing	proportion	of	
the	 data	 used	 in	 the	 training	 set,	with	 the	variance	 also	 increas-
ing	in	some	instances	(see	populations	A	and	B	in	Figure	5).	These	
results	suggest	 that	assignment	accuracy	could	become	upwardly	
	biased	when	the	proportion	of	individuals	used	as	training	data	is	
too	 large	 (e.g.,	 leave-	one-	out	 cross-	validation	 approach).	 Lastly,	
after	 	baseline	 data	 are	 evaluated	 and	 the	 results	 are	 deemed	
	satisfactory,	 users	 can	 	perform	 an	 assignment	 test	 on	 a	 mixture	
of	 	individuals	 from	 unknown	 origins	 using	 the	 function	 assign.X. 
Example	codes	and	datasets	used	here	can	be	found	on	our	tutorial	
website	(http://alexkychen.github.io/assignPOP).

4  | CONCLUSIONS

Herein,	we	described	 the	 first	 release	of	assignPOP,	which	 includes	
several	 novel	 features	 to	 perform	 population	 assignment	 using	 the	
concept	and	methods	of	machine	learning.	It	is	a	versatile	r	package	
in	that	it	allows	both	genetic	and	non-	genetic	data	to	be	integrated.	In	
turn,	researchers	can	compare	assignment	results	generated	from	the	
different	data	types,	thus	enabling	them	to	more	easily	identify	useful	
markers	 for	population	discrimination	 than	existing	 tools.	We	show	
that	 this	 determination	 is	 important	 because,	 if	 population-	specific	
features	exist	in	these	different	data	types,	their	integration	can	im-
prove	 overall	 population	 assignment	 results.	Moreover,	assignPOP’s	
ability	 to	 resample	 various	 combinations	 of	 training	 data	 and	 per-
form	 independent	cross-	validation	tests	can	help	researchers	evalu-
ate	whether	a	baseline	dataset	has	sufficient	discriminatory	power	to	
predict	 the	 source	 population(s)	 of	 individuals	while	 simultaneously	
preventing	 the	 predictive	 models	 from	 overfitting.	 By	 facilitating	
the	ability	of	users	to	explore	population	structure,	 identify	markers	
that	 can	 best	 discriminate	 among	 populations,	 and	 then	 use	 these	
population-	specific	markers	to	determine	the	source	origin(s)	of	indi-
viduals	from	a	“mixed”	population,	assignPOP	is	likely	to	benefit	both	
species	conservation	and	management.
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